NUP84
Gene Ontology Biological Process
- cellular response to DNA damage stimulus [IMP]
- chromatin silencing at silent mating-type cassette [IDA]
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus [IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- nuclear pore distribution [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI, IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein import into nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RAD52
Gene Ontology Biological Process
- DNA amplification [IMP]
- DNA recombinase assembly [IDA]
- DNA strand renaturation [IDA]
- double-strand break repair via break-induced replication [IMP]
- double-strand break repair via homologous recombination [IMP]
- double-strand break repair via single-strand annealing [IGI]
- meiotic joint molecule formation [IGI, IMP]
- postreplication repair [IMP]
- telomere maintenance via recombination [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
The Nup84 complex coordinates the DNA damage response to warrant genome integrity.
DNA lesions interfere with cellular processes such as transcription and replication and need to be adequately resolved to warrant genome integrity. Beyond their primary role in molecule transport, nuclear pore complexes (NPCs) function in other processes such as transcription, nuclear organization and DNA double strand break (DSB) repair. Here we found that the removal of UV-induced DNA lesions by nucleotide ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: viability (APO:0000111)
Additional Notes
- genetic complex
- triple mutants lethal
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD52 NUP84 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -12.2635 | BioGRID | 213686 | |
NUP84 RAD52 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1246 | BioGRID | 2090344 | |
RAD52 NUP84 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -11.5217 | BioGRID | 322473 | |
NUP84 RAD52 | Phenotypic Suppression Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene results in suppression of any phenotype (other than lethality/growth defect) associated with mutation or over expression of another gene. | Low | - | BioGRID | 1277719 |
Curated By
- BioGRID