EAF1
Gene Ontology Biological Process
Gene Ontology Cellular Component
RAD6
Gene Ontology Biological Process
- DNA-templated transcription, termination [IMP]
- ER-associated ubiquitin-dependent protein catabolic process [IGI]
- chromatin silencing at telomere [IMP]
- double-strand break repair via homologous recombination [IGI]
- error-free postreplication DNA repair [IGI]
- error-free translesion synthesis [IGI]
- error-prone translesion synthesis [IGI]
- histone monoubiquitination [IMP]
- meiotic DNA double-strand break formation [IMP]
- mitotic G1 DNA damage checkpoint [IMP]
- protein monoubiquitination [IMP]
- protein polyubiquitination [IMP]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IMP]
- regulation of dipeptide transport [IMP]
- telomere maintenance via recombination [IGI]
- transcription from RNA polymerase II promoter [IPI]
- ubiquitin-dependent protein catabolic process via the N-end rule pathway [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.
The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that ... [more]
Throughput
- High Throughput|Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- High Throughput: Synthetic Genetic Array (SGA) analysis
- Low Throughput: Confirmed by tetrad analysis.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RAD6 EAF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -5.8301 | BioGRID | 216643 | |
EAF1 RAD6 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low/High | - | BioGRID | 284273 | |
RAD6 EAF1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 457430 | |
EAF1 RAD6 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | High | - | BioGRID | 166048 |
Curated By
- BioGRID