BAIT

EAF1

VID21, YDR359C
Component of the NuA4 histone acetyltransferase complex; acts as a platform for assembly of NuA4 subunits into the native complex; required for initiation of pre-meiotic DNA replication, likely due to its requirement for expression of IME1
GO Process (3)
GO Function (0)
GO Component (2)
Saccharomyces cerevisiae (S288c)
PREY

POL32

REV5, DNA polymerase delta subunit POL32, L000004337, S000029416, L000001617, YJR043C
Third subunit of DNA polymerase delta; involved in chromosomal DNA replication; required for error-prone DNA synthesis in the presence of DNA damage and processivity; forms a complex with Rev3p, Rev7p and Pol31p; interacts with Hys2p, PCNA (Pol30p), and Pol1p
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.

Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K

The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that ... [more]

Mol. Cell. Biol. Apr. 01, 2008; 28(7);2244-56 [Pubmed: 18212056]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • High Throughput: Synthetic Genetic Array (SGA) analysis
  • Low Throughput: Confirmed by tetrad analysis.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL32 EAF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-3.5284BioGRID
220639
POL32 EAF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2707BioGRID
391869
EAF1 POL32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-BioGRID
3530402
EAF1 POL32
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
284271
POL32 EAF1
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454961
POL32 EAF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
268884
POL32 EAF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111717

Curated By

  • BioGRID