EAF5
Gene Ontology Biological Process
RRP6
Gene Ontology Biological Process
- U1 snRNA 3'-end processing [IGI, IMP]
- U4 snRNA 3'-end processing [IGI, IMP]
- U5 snRNA 3'-end processing [IGI, IMP]
- exonucleolytic trimming to generate mature 3'-end of 5.8S rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA) [IMP]
- histone mRNA catabolic process [IMP]
- nuclear polyadenylation-dependent CUT catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent antisense transcript catabolic process [IMP]
- nuclear polyadenylation-dependent mRNA catabolic process [IMP]
- nuclear polyadenylation-dependent rRNA catabolic process [IGI, IMP]
- nuclear polyadenylation-dependent snRNA catabolic process [IMP]
- nuclear polyadenylation-dependent snoRNA catabolic process [IMP]
- nuclear polyadenylation-dependent tRNA catabolic process [IDA, IGI]
- nuclear retention of pre-mRNA at the site of transcription [IGI]
- nuclear retention of pre-mRNA with aberrant 3'-ends at the site of transcription [IGI]
- polyadenylation-dependent snoRNA 3'-end processing [IMP]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.
The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that ... [more]
Throughput
- High Throughput|Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- High Throughput: Synthetic Genetic Array (SGA) analysis
- Low Throughput: Confirmed by tetrad analysis.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RRP6 EAF5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -4.8796 | BioGRID | 217785 | |
EAF5 RRP6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.4061 | BioGRID | 2104794 | |
EAF5 RRP6 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -7.452 | BioGRID | 309967 | |
RRP6 EAF5 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -8.1316 | BioGRID | 508988 |
Curated By
- BioGRID