BAIT

ESA1

TAS1, NuA4 histone acetyltransferase complex catalytic subunit ESA1, KAT5, L000003952, YOR244W
Catalytic subunit of the histone acetyltransferase complex (NuA4); acetylates four conserved internal lysines of histone H4 N-terminal tail and can acetylate histone H2A; master regulator of cellular acetylation balance; required for cell cycle progression and transcriptional silencing at the rDNA locus and regulation of autophagy; human ortholog TIP60/KAT5 is implicated in cancer and other diseases
Saccharomyces cerevisiae (S288c)
PREY

ELG1

RTT110, S000007438, YOR144C
Subunit of an alternative replication factor C complex; important for DNA replication and genome integrity; suppresses spontaneous DNA damage; involved in homologous recombination-mediated repair and telomere homeostasis; required for PCNA (Pol30p) unloading during DNA replication
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity.

Mitchell L, Lambert JP, Gerdes M, Al-Madhoun AS, Skerjanc IS, Figeys D, Baetz K

The Saccharomyces cerevisiae NuA4 histone acetyltransferase complex catalyzes the acetylation of histone H4 and the histone variant Htz1 to regulate key cellular events, including transcription, DNA repair, and faithful chromosome segregation. To further investigate the cellular processes impacted by NuA4, we exploited the nonessential subunits of the complex to build an extensive NuA4 genetic-interaction network map. The map reveals that ... [more]

Mol. Cell. Biol. Apr. 01, 2008; 28(7);2244-56 [Pubmed: 18212056]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • vegetative growth (APO:0000106)

Additional Notes

  • High Throughput: Synthetic Genetic Array (SGA) analysis
  • Low Throughput: Confirmed by tetrad analysis.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ELG1 ESA1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High0.0013BioGRID
822406

Curated By

  • BioGRID