BAIT
NFX1
NFX2, TEG-42, Tex42
nuclear transcription factor, X-box binding 1
GO Process (3)
GO Function (4)
GO Component (4)
Gene Ontology Biological Process
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- poly(A) RNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [TAS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II regulatory region sequence-specific DNA binding [IDA]
- poly(A) RNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [TAS]
Gene Ontology Cellular Component
Homo sapiens
PREY
USP15
UNPH-2, UNPH4
ubiquitin specific peptidase 15
GO Process (9)
GO Function (8)
GO Component (2)
Gene Ontology Biological Process
- BMP signaling pathway [IDA]
- histone H2B conserved C-terminal lysine deubiquitination [IDA]
- monoubiquitinated protein deubiquitination [IDA]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- pathway-restricted SMAD protein phosphorylation [IMP]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IBA]
- protein deubiquitination [IDA]
- regulation of proteasomal protein catabolic process [IBA]
- transforming growth factor beta receptor signaling pathway [IDA, IMP, TAS]
Gene Ontology Molecular Function
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Identification of a USP9X Substrate NFX1-123 by SILAC-Based Quantitative Proteomics.
The deubiquitinase USP9X is involved in multiple diseases including neurodegeneration, epilepsy, and various types of tumors by targeting different substrates. In the present study, we aimed to explore the potential substrates of USP9X and performed SILAC-based quantitative proteomics to compare these substrates in USP9X-knockdown and wild-type HeLa cells. We consequently carried out Flag-NFX1-123 tag affinity-based mass spectrometry and confirmed that ... [more]
J. Proteome Res. Dec. 07, 2018; 18(6);2654-2665 [Pubmed: 31059266]
Throughput
- High Throughput
Curated By
- BioGRID