WWP2
Gene Ontology Biological Process
- cellular protein modification process [TAS]
- negative regulation of gene expression [IMP]
- negative regulation of protein transport [IMP]
- negative regulation of sequence-specific DNA binding transcription factor activity [ISS]
- negative regulation of transcription from RNA polymerase II promoter [IMP, ISS]
- negative regulation of transcription, DNA-templated [ISS]
- negative regulation of transporter activity [IDA]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IMP]
- protein K63-linked ubiquitination [ISS]
- protein autoubiquitination [IDA]
- protein ubiquitination [IDA]
- protein ubiquitination involved in ubiquitin-dependent protein catabolic process [IBA]
- regulation of ion transmembrane transport [IDA]
- regulation of membrane potential [IDA]
- regulation of potassium ion transmembrane transporter activity [IDA]
- viral entry into host cell [TAS]
Gene Ontology Molecular Function
NPM1
Gene Ontology Biological Process
- CENP-A containing nucleosome assembly [TAS]
- DNA repair [IDA]
- cell aging [IMP, ISS]
- centrosome cycle [IMP, ISS]
- intracellular protein transport [TAS]
- negative regulation of apoptotic process [IDA, NAS]
- negative regulation of cell proliferation [IMP, ISS]
- negative regulation of centrosome duplication [IMP]
- negative regulation of protein kinase activity by regulation of protein phosphorylation [IDA]
- nucleocytoplasmic transport [IDA, TAS]
- nucleosome assembly [IDA, TAS]
- positive regulation of NF-kappaB transcription factor activity [IMP]
- positive regulation of translation [IDA]
- protein localization [IDA]
- protein oligomerization [IDA]
- regulation of centriole replication [IMP]
- regulation of eIF2 alpha phosphorylation by dsRNA [IDA]
- regulation of endodeoxyribonuclease activity [IDA]
- regulation of endoribonuclease activity [IDA]
- response to stress [IMP]
- ribosome assembly [TAS]
- signal transduction [NAS]
- viral process [TAS]
Gene Ontology Molecular Function- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
- NF-kappaB binding [IDA, ISS]
- RNA binding [IDA]
- Tat protein binding [IDA]
- histone binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IMP]
- protein homodimerization activity [IDA]
- protein kinase binding [IPI]
- protein kinase inhibitor activity [IDA]
- ribosomal large subunit binding [IDA]
- ribosomal small subunit binding [IDA]
- transcription coactivator activity [IDA]
- unfolded protein binding [IDA, ISS]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
WWP2 ubiquitylates RNA polymerase II for DNA-PK-dependent transcription arrest and repair at DNA breaks.
DNA double-strand breaks (DSBs) at RNA polymerase II (RNAPII) transcribed genes lead to inhibition of transcription. The DNA-dependent protein kinase (DNA-PK) complex plays a pivotal role in transcription inhibition at DSBs by stimulating proteasome-dependent eviction of RNAPII at these lesions. How DNA-PK triggers RNAPII eviction to inhibit transcription at DSBs remains unclear. Here we show that the HECT E3 ubiquitin ... [more]
Throughput
- High Throughput
Additional Notes
- assayed using SILAC IP (stable isotope labeling by amino acids in cell culture-based quantitative immunoprecipitation)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
WWP2 NPM1 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - |
Curated By
- BioGRID