MATR3
Gene Ontology Molecular Function
Gene Ontology Cellular Component
DDX3X
Gene Ontology Biological Process
- ATP catabolic process [IDA, TAS]
- DNA duplex unwinding [IDA]
- RNA secondary structure unwinding [IDA]
- cellular response to arsenic-containing substance [IDA]
- cellular response to osmotic stress [IDA]
- chromosome segregation [IMP]
- extrinsic apoptotic signaling pathway via death domain receptors [IMP]
- innate immune response [IMP]
- intracellular signal transduction [IDA]
- intrinsic apoptotic signaling pathway [IMP]
- mature ribosome assembly [IMP]
- negative regulation of apoptotic process [IMP]
- negative regulation of cell growth [IDA]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- negative regulation of intrinsic apoptotic signaling pathway [IMP]
- negative regulation of protein complex assembly [IDA]
- negative regulation of translation [IMP]
- positive regulation of G1/S transition of mitotic cell cycle [IMP]
- positive regulation of apoptotic process [IMP]
- positive regulation of cell growth [IMP]
- positive regulation of chemokine (C-C motif) ligand 5 production [TAS]
- positive regulation of cysteine-type endopeptidase activity involved in apoptotic process [IMP]
- positive regulation of interferon-beta production [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of translation [IDA]
- positive regulation of translational initiation [IMP]
- positive regulation of viral genome replication [IMP]
- response to virus [IDA]
- stress granule assembly [IDA]
Gene Ontology Molecular Function- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
- ATP-dependent DNA helicase activity [IDA]
- ATP-dependent RNA helicase activity [IDA]
- ATPase activity [IDA]
- DNA binding [IDA]
- RNA binding [IDA]
- RNA stem-loop binding [IDA]
- eukaryotic initiation factor 4E binding [IDA]
- mRNA 5'-UTR binding [IDA]
- poly(A) RNA binding [IDA]
- poly(A) binding [IDA]
- protein binding [IPI]
- ribosomal small subunit binding [IDA]
- transcription factor binding [IDA]
- translation initiation factor binding [IDA]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Characterization of gene regulation and protein interaction networks for Matrin 3 encoding mutations linked to amyotrophic lateral sclerosis and myopathy.
To understand how mutations in Matrin 3 (MATR3) cause amyotrophic lateral sclerosis (ALS) and distal myopathy, we used transcriptome and interactome analysis, coupled with microscopy. Over-expression of wild-type (WT) or F115C mutant MATR3 had little impact on gene expression in neuroglia cells. Only 23 genes, expressed at levels of >100 transcripts showed ?1.6-fold changes in expression by transfection with WT ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| MATR3 DDX3X | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | - | |
| MATR3 DDX3X | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 1444143 |
Curated By
- BioGRID