BAIT

POL2

DUN2, DNA polymerase epsilon catalytic subunit, L000001461, YNL262W
Catalytic subunit of DNA polymerase (II) epsilon; a chromosomal DNA replication polymerase that exhibits processivity and proofreading exonuclease activity; participates in leading-strand synthesis during DNA replication; also involved in DNA synthesis during DNA repair; interacts extensively with Mrc1p
Saccharomyces cerevisiae (S288c)
PREY

RNH1

L000001653, YMR234W
Ribonuclease H1; able to bind double-stranded RNAs and RNA-DNA hybrids; associates with RNAse polymerase I.
GO Process (1)
GO Function (1)
GO Component (2)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Dosage Rescue

A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.

Publication

Sumoylation of the DNA polymerase ? by the Smc5/6 complex contributes to DNA replication.

Meng X, Wei L, Peng XP, Zhao X

DNA polymerase epsilon (Pol ?) is critical for genome duplication, but little is known about how post-translational modification regulates its function. Here we report that the Pol ? catalytic subunit Pol2 in yeast is sumoylated at a single lysine within a catalytic domain insertion uniquely possessed by Pol2 family members. We found that Pol2 sumoylation occurs specifically in S phase ... [more]

PLoS Genet. Dec. 01, 2018; 15(11);e1008426 [Pubmed: 31765372]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: resistance to chemicals (APO:0000087)
  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Figure 4
  • RNH1 overexpression rescues CPT sensitivity of dpb2-1 pol2-KR double mutant
  • genetic complex

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL2 RNH1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
656182
POL2 RNH1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
2342446

Curated By

  • BioGRID