BAIT

SMT3

SUMO family protein SMT3, L000001938, YDR510W
Ubiquitin-like protein of the SUMO family; conjugated to lysine residues of target proteins; associates with transcriptionally active genes; regulates chromatid cohesion, chromosome segregation, APC-mediated proteolysis, DNA replication and septin ring dynamics; phosphorylated at Ser2
GO Process (1)
GO Function (1)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

POL2

DUN2, DNA polymerase epsilon catalytic subunit, L000001461, YNL262W
Catalytic subunit of DNA polymerase (II) epsilon; a chromosomal DNA replication polymerase that exhibits processivity and proofreading exonuclease activity; participates in leading-strand synthesis during DNA replication; also involved in DNA synthesis during DNA repair; interacts extensively with Mrc1p
Saccharomyces cerevisiae (S288c)

Two-hybrid

Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.

Publication

The S phase checkpoint promotes the Smc5/6 complex dependent SUMOylation of Pol2, the catalytic subunit of DNA polymerase ?.

Winczura A, Appanah R, Tatham MH, Hay RT, De Piccoli G

Replication fork stalling and accumulation of single-stranded DNA trigger the S phase checkpoint, a signalling cascade that, in budding yeast, leads to the activation of the Rad53 kinase. Rad53 is essential in maintaining cell viability, but its targets of regulation are still partially unknown. Here we show that Rad53 drives the hyper-SUMOylation of Pol2, the catalytic subunit of DNA polymerase ... [more]

PLoS Genet. Dec. 01, 2018; 15(11);e1008427 [Pubmed: 31765407]

Throughput

  • Low Throughput

Additional Notes

  • Figure 6

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
POL2 SMT3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1319BioGRID
1950103

Curated By

  • BioGRID