ARX1
Gene Ontology Biological Process
Gene Ontology Cellular Component
NUP120
Gene Ontology Biological Process
- double-strand break repair [IGI, IMP]
- mRNA export from nucleus [IMP]
- mRNA export from nucleus in response to heat stress [IMP]
- maintenance of chromatin silencing at telomere [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- nuclear pore distribution [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of transcription, DNA-templated [IDA, IGI]
- posttranscriptional tethering of RNA polymerase II gene DNA at nuclear periphery [IMP]
- protein export from nucleus [IMP]
- protein import into nucleus [IMP]
- ribosomal large subunit export from nucleus [IMP]
- telomere tethering at nuclear periphery [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
Arx1 is a nuclear export receptor for the 60S ribosomal subunit in yeast.
We previously showed that nuclear export of the large (60S) ribosomal subunit relies on Nmd3 in a Crm1-dependent manner. Recently the general mRNA export factor, the Mtr2/Mex67 heterodimer, was shown to act as an export receptor in parallel with Crm1. These observations raise the possibility that nuclear export of the 60S subunit in Saccharomyces cerevisiae requires multiple export receptors. Here, ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ARX1 NUP120 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -8.0699 | BioGRID | 309653 | |
ARX1 NUP120 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 268096 |
Curated By
- BioGRID