BAIT

RAD52

recombinase RAD52, L000001572, YML032C
Protein that stimulates strand exchange; stimulates strand exchange by facilitating Rad51p binding to single-stranded DNA; anneals complementary single-stranded DNA; involved in the repair of double-strand breaks in DNA during vegetative growth and meiosis and UV induced sister chromatid recombination
Saccharomyces cerevisiae (S288c)
PREY

CTF4

CHL15, POB1, chromatin-binding protein CTF4, L000000326, YPR135W
Chromatin-associated protein; required for sister chromatid cohesion; interacts with DNA polymerase alpha (Pol1p) and may link DNA synthesis to sister chromatid cohesion
Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Genome-wide analysis of Rad52 foci reveals diverse mechanisms impacting recombination.

Alvaro D, Lisby M, Rothstein R

To investigate the DNA damage response, we undertook a genome-wide study in Saccharomyces cerevisiae and identified 86 gene deletions that lead to increased levels of spontaneous Rad52 foci in proliferating diploid cells. More than half of the genes are conserved across species ranging from yeast to humans. Along with genes involved in DNA replication, repair, and chromatin remodeling, we found ... [more]

PLoS Genet. Dec. 01, 2007; 3(12);e228 [Pubmed: 18085829]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF4 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2354889
CTF4 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
162104
CTF4 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
452871
RAD52 CTF4
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
457188
CTF4 RAD52
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low-BioGRID
2389187
CTF4 RAD52
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110773

Curated By

  • BioGRID