BAIT

POL32

REV5, DNA polymerase delta subunit POL32, L000004337, S000029416, L000001617, YJR043C
Third subunit of DNA polymerase delta; involved in chromosomal DNA replication; required for error-prone DNA synthesis in the presence of DNA damage and processivity; forms a complex with Rev3p, Rev7p and Pol31p; interacts with Hys2p, PCNA (Pol30p), and Pol1p
Saccharomyces cerevisiae (S288c)
PREY

CTF18

CHL12, L000000431, L000000325, YMR078C
Subunit of a complex with Ctf8p; shares some subunits with Replication Factor C and is required for sister chromatid cohesion; may have overlapping functions with Rad24p in the DNA damage replication checkpoint
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork.

Hanna M, Ball LG, Tong AH, Boone C, Xiao W

POL32 encodes a non-essential subunit of Poldelta and plays a role in Poldelta processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polzeta-mediated translesion synthesis, but not for Poleta-mediated activity. Unlike Polzeta, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, ... [more]

Mutat. Res. Dec. 01, 2007; 625(1);164-76 [Pubmed: 17681555]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
CTF18 POL32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-4.5666BioGRID
218315
CTF18 POL32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.127BioGRID
2162059
POL32 CTF18
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
455773
CTF18 POL32
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454760
CTF18 POL32
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110903
POL32 CTF18
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
110904

Curated By

  • BioGRID