BAIT

POL32

REV5, DNA polymerase delta subunit POL32, L000004337, S000029416, L000001617, YJR043C
Third subunit of DNA polymerase delta; involved in chromosomal DNA replication; required for error-prone DNA synthesis in the presence of DNA damage and processivity; forms a complex with Rev3p, Rev7p and Pol31p; interacts with Hys2p, PCNA (Pol30p), and Pol1p
Saccharomyces cerevisiae (S288c)
PREY

RMI1

NCE4, L000004399, YPL024W
Subunit of the RecQ (Sgs1p) - Topo III (Top3p) complex; stimulates superhelical relaxing, DNA catenation/decatenation and ssDNA binding activities of Top3p; involved in response to DNA damage; functions in S phase-mediated cohesion establishment via a pathway involving the Ctf18-RFC complex and Mrc1p; stimulates Top3p DNA catenation/decatenation activity; null mutants display increased rates of recombination and delayed S phase
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Pol32 is required for Pol zeta-dependent translesion synthesis and prevents double-strand breaks at the replication fork.

Hanna M, Ball LG, Tong AH, Boone C, Xiao W

POL32 encodes a non-essential subunit of Poldelta and plays a role in Poldelta processivity and DNA repair. In order to understand how Pol32 is involved in these processes, we performed extensive genetic analysis and demonstrated that POL32 is required for Polzeta-mediated translesion synthesis, but not for Poleta-mediated activity. Unlike Polzeta, inactivation of Pol32 does not result in decreased spontaneous mutagenesis, ... [more]

Mutat. Res. Dec. 01, 2007; 625(1);164-76 [Pubmed: 17681555]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RMI1 POL32
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-11.3449BioGRID
213873
POL32 RMI1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.4372BioGRID
2138740
POL32 RMI1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
111733

Curated By

  • BioGRID