BAIT

HST3

L000003042, YOR025W
Member of the Sir2 family of NAD(+)-dependent protein deacetylases; involved along with Hst4p in telomeric silencing, cell cycle progression, radiation resistance, genomic stability and short-chain fatty acid metabolism
GO Process (3)
GO Function (1)
GO Component (1)

Gene Ontology Molecular Function

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)
PREY

TOF1

L000004244, YNL273W
Subunit of a replication-pausing checkpoint complex; Tof1p-Mrc1p-Csm3p acts at the stalled replication fork to promote sister chromatid cohesion after DNA damage, facilitating gap repair of damaged DNA; interacts with the MCM helicase; relocalizes to the cytosol in response to hypoxia
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Hst3 is regulated by Mec1-dependent proteolysis and controls the S phase checkpoint and sister chromatid cohesion by deacetylating histone H3 at lysine 56.

Thaminy S, Newcomb B, Kim J, Gatbonton T, Foss E, Simon J, Bedalov A

The SIR2 homologues HST3 and HST4 have been implicated in maintenance of genome integrity in the yeast Saccharomyces cerevisiae. We find that Hst3 has NAD-dependent histone deacetylase activity in vitro and that it functions during S phase to deacetylate the core domain of histone H3 at lysine 56 (H3K56). In response to genotoxic stress, Hst3 undergoes rapid Mec1-dependent phosphorylation and ... [more]

J. Biol. Chem. Dec. 28, 2007; 282(52);37805-14 [Pubmed: 17977840]

Throughput

  • Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • The experiment involved an hst3 hst4 tof1 triple mutant.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
HST3 TOF1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-6.3637BioGRID
216200
TOF1 HST3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.521BioGRID
408081
TOF1 HST3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.5584BioGRID
2174136
TOF1 HST3
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.1211BioGRID
2426733
TOF1 HST3
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

High-BioGRID
454678
HST3 TOF1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

High-BioGRID
456485

Curated By

  • BioGRID