BAIT
HTT
HD, IT15
huntingtin
GO Process (8)
GO Function (8)
GO Component (12)
Gene Ontology Biological Process
- Golgi organization [IMP]
- establishment of mitotic spindle orientation [IMP]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- organ development [IBA]
- positive regulation of inositol 1,4,5-trisphosphate-sensitive calcium-release channel activity [IDA]
- regulation of protein phosphatase type 2A activity [IMP]
- retrograde vesicle-mediated transport, Golgi to ER [IMP]
- vesicle transport along microtubule [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
POLR2H
RPABC3, RPB17, RPB8
polymerase (RNA) II (DNA directed) polypeptide H
GO Process (21)
GO Function (3)
GO Component (6)
Gene Ontology Biological Process
- 7-methylguanosine mRNA capping [TAS]
- DNA repair [TAS]
- RNA splicing [TAS]
- gene expression [TAS]
- innate immune response [TAS]
- mRNA splicing, via spliceosome [TAS]
- nucleotide-excision repair [TAS]
- positive regulation of type I interferon production [TAS]
- positive regulation of viral transcription [TAS]
- termination of RNA polymerase I transcription [TAS]
- termination of RNA polymerase III transcription [TAS]
- transcription elongation from RNA polymerase I promoter [TAS]
- transcription elongation from RNA polymerase II promoter [TAS]
- transcription elongation from RNA polymerase III promoter [TAS]
- transcription from RNA polymerase I promoter [TAS]
- transcription from RNA polymerase II promoter [IDA, TAS]
- transcription from RNA polymerase III promoter [TAS]
- transcription initiation from RNA polymerase I promoter [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription-coupled nucleotide-excision repair [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Quantitative interaction proteomics of neurodegenerative disease proteins.
Several proteins have been linked to neurodegenerative disorders (NDDs), but their molecular function is not completely understood. Here, we used quantitative interaction proteomics to identify binding partners of Amyloid beta precursor protein (APP) and Presenilin-1 (PSEN1) for Alzheimer's disease (AD), Huntingtin (HTT) for Huntington's disease, Parkin (PARK2) for Parkinson's disease, and Ataxin-1 (ATXN1) for spinocerebellar ataxia type 1. Our network ... [more]
Cell Rep May. 19, 2015; 11(7);1134-46 [Pubmed: 25959826]
Throughput
- High Throughput
Curated By
- BioGRID