NFE2L1
Gene Ontology Biological Process
Gene Ontology Molecular Function
OGT
Gene Ontology Biological Process
- apoptotic process [IDA]
- cellular response to retinoic acid [IMP]
- chromatin organization [TAS]
- circadian regulation of gene expression [ISS]
- histone H3-K4 trimethylation [IMP]
- histone H4-K16 acetylation [IDA]
- histone H4-K5 acetylation [IDA]
- histone H4-K8 acetylation [IDA]
- negative regulation of protein ubiquitination [ISS]
- phosphatidylinositol-mediated signaling [IDA]
- positive regulation of catalytic activity [IDA]
- positive regulation of granulocyte differentiation [IMP]
- positive regulation of histone H3-K27 methylation [IMP]
- positive regulation of histone H3-K4 methylation [IDA]
- positive regulation of proteolysis [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- protein O-linked glycosylation [IDA, IMP]
- regulation of Rac protein signal transduction [IDA]
- regulation of gluconeogenesis involved in cellular glucose homeostasis [ISS]
- regulation of glycolytic process [IDA]
- regulation of insulin receptor signaling pathway [IDA]
- response to insulin [IDA]
- response to nutrient [TAS]
- signal transduction [TAS]
Gene Ontology Molecular Function- acetylglucosaminyltransferase activity [TAS]
- enzyme activator activity [IDA]
- histone acetyltransferase activity (H4-K16 specific) [IDA]
- histone acetyltransferase activity (H4-K5 specific) [IDA]
- histone acetyltransferase activity (H4-K8 specific) [IDA]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- protein N-acetylglucosaminyltransferase activity [IDA]
- protein O-GlcNAc transferase activity [IMP, ISS]
- protein binding [IPI]
- acetylglucosaminyltransferase activity [TAS]
- enzyme activator activity [IDA]
- histone acetyltransferase activity (H4-K16 specific) [IDA]
- histone acetyltransferase activity (H4-K5 specific) [IDA]
- histone acetyltransferase activity (H4-K8 specific) [IDA]
- phosphatidylinositol-3,4,5-trisphosphate binding [IDA]
- protein N-acetylglucosaminyltransferase activity [IDA]
- protein O-GlcNAc transferase activity [IMP, ISS]
- protein binding [IPI]
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
O-GlcNAcylation Signal Mediates Proteasome Inhibitor Resistance in Cancer Cells by Stabilizing NRF1.
Cancer cells often heavily depend on the ubiquitin-proteasome system (UPS) for their growth and survival. Irrespective of their strong dependence on the proteasome activity, cancer cells, except for multiple myeloma, are mostly resistant to proteasome inhibitors. A major cause of this resistance is the proteasome bounce-back response mediated by NRF1, a transcription factor that coordinately activates proteasome subunit genes. To ... [more]
Throughput
- High Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| NFE2L1 OGT | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID