BAIT

DHH1

DExD/H-box ATP-dependent RNA helicase DHH1, L000000504, YDL160C
Cytoplasmic DExD/H-box helicase, stimulates mRNA decapping; coordinates distinct steps in mRNA function and decay, interacts with both the decapping and deadenylase complexes, role in translational repression, mRNA decay, and processing body dynamics; may have a role in mRNA export; C-terminus of Dhh1p interacts with Ngr1p and promotes POR1, but not EDC1 mRNA decay; forms cytoplasmic foci upon DNA replication stress
Saccharomyces cerevisiae (S288c)
PREY

MOT2

NOT4, SIG1, CCR4-NOT core ubiquitin-protein ligase subunit MOT2, L000001887, L000001137, YER068W
Ubiquitin-protein ligase subunit of the CCR4-NOT complex; with Ubc4p, ubiquitinates nascent polypeptide-associated complex subunits and histone demethyase Jhd2p; CCR4-NOT has roles in transcription regulation, mRNA degradation, and post-transcriptional modifications; regulates levels of DNA Polymerase-{alpha} to promote efficient and accurate DNA replication
Saccharomyces cerevisiae (S288c)

PCA

A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay.

Publication

An in vivo map of the yeast protein interactome.

Tarassov K, Messier V, Landry CR, Radinovic S, Serna Molina MM, Shames I, Malitskaya Y, Vogel J, Bussey H, Michnick SW

Protein interactions regulate the systems-level behavior of cells; thus, deciphering the structure and dynamics of protein interaction networks in their cellular context is a central goal in biology. We have performed a genome-wide in vivo screen for protein-protein interactions in Saccharomyces cerevisiae by means of a protein-fragment complementation assay (PCA). We identified 2770 interactions among 1124 endogenously expressed proteins. Comparison ... [more]

Science Jun. 13, 2008; 320(5882);1465-70 [Pubmed: 18467557]

Throughput

  • High Throughput

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
MOT2 DHH1
Affinity Capture-MS
Affinity Capture-MS

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.

Low-BioGRID
-
DHH1 MOT2
Affinity Capture-RNA
Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

High-BioGRID
2391181
DHH1 MOT2
Affinity Capture-RNA
Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

High-BioGRID
-
DHH1 MOT2
Affinity Capture-RNA
Affinity Capture-RNA

An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis.

High-BioGRID
812059
DHH1 MOT2
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low-BioGRID
157961

Curated By

  • BioGRID