ASB11
TCEB1
Gene Ontology Biological Process
- cellular response to hypoxia [TAS]
- gene expression [TAS]
- positive regulation of viral transcription [TAS]
- regulation of transcription from RNA polymerase II promoter [TAS]
- regulation of transcription from RNA polymerase II promoter in response to hypoxia [TAS]
- transcription elongation from RNA polymerase II promoter [TAS]
- transcription from RNA polymerase II promoter [TAS]
- viral process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- cytosol [TAS]
- nucleoplasm [TAS]
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
BIK ubiquitination by the E3 ligase Cul5-ASB11 determines cell fate during cellular stress.
The BH3-only pro-apoptotic protein BIK is regulated by the ubiquitin-proteasome system. However, the mechanism of this regulation and its physiological functions remain elusive. Here, we identify Cul5-ASB11 as the E3 ligase targeting BIK for ubiquitination and degradation. ER stress leads to the activation of ASB11 by XBP1s during the adaptive phase of the unfolded protein response, which stimulates BIK ubiquitination, ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID