HSPB1
Gene Ontology Biological Process
- RNA metabolic process [TAS]
- cellular component movement [TAS]
- cellular response to vascular endothelial growth factor stimulus [IMP]
- gene expression [TAS]
- intracellular signal transduction [IMP]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [TAS]
- negative regulation of oxidative stress-induced intrinsic apoptotic signaling pathway [ISS]
- negative regulation of protein kinase activity [ISS]
- platelet aggregation [IMP]
- positive regulation of angiogenesis [IMP]
- positive regulation of blood vessel endothelial cell migration [IMP]
- positive regulation of endothelial cell chemotaxis [IMP]
- positive regulation of endothelial cell chemotaxis by VEGF-activated vascular endothelial growth factor receptor signaling pathway [IMP]
- positive regulation of interleukin-1 beta production [ISS]
- positive regulation of tumor necrosis factor biosynthetic process [ISS]
- regulation of I-kappaB kinase/NF-kappaB signaling [ISS]
- regulation of translational initiation [TAS]
- response to unfolded protein [NAS]
- response to virus [IEP]
- retina homeostasis [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SP1
Gene Ontology Biological Process
- cellular lipid metabolic process [TAS]
- gene expression [TAS]
- positive regulation by host of viral transcription [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of transcription, DNA-templated [IDA]
- small molecule metabolic process [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [IDA]
- HMG box domain binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [ISS]
- bHLH transcription factor binding [ISS]
- core promoter sequence-specific DNA binding [ISS]
- double-stranded DNA binding [IDA]
- histone deacetylase binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding RNA polymerase II transcription factor activity [IBA]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Gene Ontology Cellular Component
- nucleoplasm [IDA, TAS]
- nucleus [IC]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
High levels of Daxx due to low cellular levels of HSP25 in murine cancer cells result in inefficient adenovirus replication.
When the adenoviral protein E1B55K binds death domain-associated protein (Daxx), the proteasome-dependent degradation of Daxx is initiated, and adenoviral replication is effectively maintained. Here, we show that the cellular levels of Daxx differ between human and mouse cancer cell lines. Specifically, we observed higher cellular Daxx levels and the diminished replication of oncolytic adenovirus in mouse cancer cell lines, suggesting ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID