TUB4
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
SET2
Gene Ontology Biological Process
- DNA-templated transcription, elongation [IDA, IPI]
- DNA-templated transcription, termination [IMP]
- ascospore formation [IMP]
- histone deacetylation [IMP]
- histone methylation [IDA, IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of histone H3-K14 acetylation [IMP]
- negative regulation of histone H3-K9 acetylation [IMP]
- negative regulation of reciprocal meiotic recombination [IMP]
- positive regulation of histone acetylation [IGI]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of histone exchange [IMP]
- regulation of transcription, DNA-templated [IDA, IMP]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
Interrogation of γ-tubulin alleles using high-resolution fitness measurements reveals a distinct cytoplasmic function in spindle alignment.
γ-Tubulin has a well-established role in nucleating the assembly of microtubules, yet how phosphorylation regulates its activity remains unclear. Here, we use a time-resolved, fitness-based SGA approach to compare two γ-tubulin alleles, and find that the genetic interaction profile of γtub-Y362E is enriched in spindle positioning and cell polarity genes relative to that of γtub-Y445D, which is enriched in genes ... [more]
Throughput
- High Throughput
Ontology Terms
- phenotype: fitness (APO:0000216)
- phenotype: colony size (APO:0000063)
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- SGI determined using GAMER
- gammatub-Y445D
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
TUB4 SET2 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1656 | BioGRID | 2001123 |
Curated By
- BioGRID