GRB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- Fc-gamma receptor signaling pathway involved in phagocytosis [TAS]
- Ras protein signal transduction [TAS]
- T cell costimulation [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell-cell signaling [TAS]
- cellular response to ionizing radiation [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [IPI, TAS]
- leukocyte migration [TAS]
- negative regulation of epidermal growth factor receptor signaling pathway [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphatidylinositol-mediated signaling [TAS]
- platelet activation [TAS]
- positive regulation of reactive oxygen species metabolic process [IMP]
- receptor internalization [IMP]
- signal transduction in response to DNA damage [IMP]
Gene Ontology Molecular Function- SH3 domain binding [IDA]
- SH3/SH2 adaptor activity [TAS]
- ephrin receptor binding [IPI]
- epidermal growth factor receptor binding [IPI]
- identical protein binding [IPI]
- insulin receptor substrate binding [IPI]
- neurotrophin TRKA receptor binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase binding [IPI]
- SH3 domain binding [IDA]
- SH3/SH2 adaptor activity [TAS]
- ephrin receptor binding [IPI]
- epidermal growth factor receptor binding [IPI]
- identical protein binding [IPI]
- insulin receptor substrate binding [IPI]
- neurotrophin TRKA receptor binding [IPI]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- protein kinase binding [IPI]
Gene Ontology Cellular Component
DNM3
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D.
Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is ... [more]
Throughput
- High Throughput
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
GRB2 DNM3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low | - | BioGRID | 832547 | |
GRB2 DNM3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | - | BioGRID | 726172 | |
GRB2 DNM3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 2220406 | |
GRB2 DNM3 | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | High | 1 | BioGRID | 3129532 |
Curated By
- BioGRID