ERBB2
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- axon guidance [TAS]
- cell proliferation [TAS]
- cell surface receptor signaling pathway [IDA]
- enzyme linked receptor protein signaling pathway [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- peptidyl-tyrosine phosphorylation [IDA, IGI, TAS]
- phosphatidylinositol 3-kinase signaling [IDA]
- phosphatidylinositol-mediated signaling [TAS]
- positive regulation of MAP kinase activity [IDA]
- positive regulation of Rho GTPase activity [ISS]
- positive regulation of cell adhesion [IDA]
- positive regulation of cell growth [IMP]
- positive regulation of epithelial cell proliferation [IDA]
- positive regulation of protein phosphorylation [ISS]
- positive regulation of transcription from RNA polymerase I promoter [IMP]
- positive regulation of transcription from RNA polymerase III promoter [IDA]
- positive regulation of translation [IMP]
- protein autophosphorylation [IDA]
- protein phosphorylation [TAS]
- regulation of ERK1 and ERK2 cascade [IMP]
- regulation of angiogenesis [NAS]
- regulation of microtubule-based process [IDA]
- signal transduction [IDA]
- signal transduction by phosphorylation [TAS]
- transmembrane receptor protein tyrosine kinase signaling pathway [IDA, TAS]
- wound healing [IDA]
Gene Ontology Molecular Function- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
- ErbB-3 class receptor binding [TAS]
- RNA polymerase I core binding [IDA]
- growth factor binding [IDA]
- identical protein binding [IPI]
- protein C-terminus binding [IPI]
- protein binding [IPI]
- protein dimerization activity [NAS]
- protein heterodimerization activity [IDA, IPI]
- protein phosphatase binding [IPI]
- protein tyrosine kinase activity [IDA, IGI, TAS]
- transmembrane receptor protein tyrosine kinase activity [IDA]
- transmembrane signaling receptor activity [IDA]
Gene Ontology Cellular Component
HDAC6
Gene Ontology Biological Process
- Hsp90 deacetylation [IMP]
- aggresome assembly [IMP]
- cellular response to hydrogen peroxide [IMP]
- cellular response to topologically incorrect protein [IMP]
- histone deacetylation [IDA, ISS]
- intracellular protein transport [IMP]
- lysosome localization [IMP]
- macroautophagy [IMP]
- misfolded or incompletely synthesized protein catabolic process [IMP]
- negative regulation of hydrogen peroxide metabolic process [IC]
- negative regulation of oxidoreductase activity [IC]
- negative regulation of protein complex disassembly [IMP]
- negative regulation of proteolysis [IMP]
- negative regulation of transcription, DNA-templated [ISS]
- peptidyl-lysine deacetylation [IMP]
- polyubiquitinated misfolded protein transport [IMP]
- positive regulation of chaperone-mediated protein complex assembly [IMP]
- positive regulation of epithelial cell migration [IMP]
- positive regulation of hydrogen peroxide-mediated programmed cell death [IDA]
- positive regulation of receptor biosynthetic process [IMP]
- positive regulation of signal transduction [IMP]
- protein deacetylation [IMP]
- regulation of androgen receptor signaling pathway [TAS]
- regulation of gene expression, epigenetic [IMP]
- regulation of microtubule-based movement [IC]
- regulation of receptor activity [IMP]
- response to growth factor [IMP]
- response to misfolded protein [IMP]
- response to organic substance [IMP]
- response to toxic substance [IMP]
- tubulin deacetylation [IDA, ISS]
Gene Ontology Molecular Function- Hsp90 protein binding [IDA]
- alpha-tubulin binding [IDA]
- beta-catenin binding [IPI]
- core promoter binding [IDA]
- dynein complex binding [IDA]
- enzyme binding [ISS]
- histone deacetylase activity [IDA]
- histone deacetylase binding [IPI]
- microtubule binding [IDA, ISS]
- polyubiquitin binding [IDA]
- protein binding [IPI]
- tau protein binding [IDA]
- tubulin deacetylase activity [IDA, ISS]
- ubiquitin protein ligase binding [IPI]
- Hsp90 protein binding [IDA]
- alpha-tubulin binding [IDA]
- beta-catenin binding [IPI]
- core promoter binding [IDA]
- dynein complex binding [IDA]
- enzyme binding [ISS]
- histone deacetylase activity [IDA]
- histone deacetylase binding [IPI]
- microtubule binding [IDA, ISS]
- polyubiquitin binding [IDA]
- protein binding [IPI]
- tau protein binding [IDA]
- tubulin deacetylase activity [IDA, ISS]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
- aggresome [IDA]
- axon [ISS]
- caveola [IDA]
- cell leading edge [IDA]
- cytoplasm [ISS]
- cytosol [ISS]
- dendrite [ISS]
- dynein complex [IDA]
- histone deacetylase complex [IDA]
- inclusion body [IDA]
- microtubule [IDA]
- microtubule associated complex [IDA]
- nucleoplasm [IDA]
- nucleus [ISS]
- perikaryon [ISS]
- perinuclear region of cytoplasm [IDA]
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Extensive rewiring of the EGFR network in colorectal cancer cells expressing transforming levels of KRASG13D.
Protein-protein-interaction networks (PPINs) organize fundamental biological processes, but how oncogenic mutations impact these interactions and their functions at a network-level scale is poorly understood. Here, we analyze how a common oncogenic KRAS mutation (KRASG13D) affects PPIN structure and function of the Epidermal Growth Factor Receptor (EGFR) network in colorectal cancer (CRC) cells. Mapping >6000 PPIs shows that this network is ... [more]
Throughput
- High Throughput
Additional Notes
- assayed using MYTH (membrane yeast two hybrid)
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| HDAC6 ERBB2 | PCA PCA A Protein-Fragment Complementation Assay (PCA) is a protein-protein interaction assay in which a bait protein is expressed as fusion to one of the either N- or C- terminal peptide fragments of a reporter protein and prey protein is expressed as fusion to the complementary N- or C- terminal fragment of the same reporter protein. Interaction of bait and prey proteins bring together complementary fragments, which can then fold into an active reporter, e.g. the split-ubiquitin assay. | Low | - | BioGRID | - |
Curated By
- BioGRID