SRF
Gene Ontology Biological Process
- angiogenesis involved in wound healing [TAS]
- cell migration involved in sprouting angiogenesis [IMP]
- cellular senescence [IMP]
- heart development [ISS]
- heart looping [ISS]
- mRNA transcription from RNA polymerase II promoter [ISS]
- muscle cell cellular homeostasis [ISS]
- negative regulation of beta-amyloid clearance [IMP]
- neuron development [TAS]
- positive regulation of cell differentiation [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of smooth muscle contraction [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription from RNA polymerase II promoter involved in myocardial precursor cell differentiation [IGI]
- positive regulation of transcription initiation from RNA polymerase II promoter [IDA]
- positive regulation of transcription via serum response element binding [IDA]
- regulation of smooth muscle cell differentiation [TAS]
- response to cytokine [IMP, NAS]
- response to hormone [IDA]
- response to hypoxia [IEP]
- response to toxic substance [TAS]
- transcription from RNA polymerase II promoter [IDA]
- trophectodermal cell differentiation [IDA]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IMP]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [ISS]
- protein binding [IPI]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- serum response element binding [IDA]
- transcription factor binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II core promoter sequence-specific DNA binding transcription factor activity [IMP]
- RNA polymerase II transcription regulatory region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [ISS]
- protein binding [IPI]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- serum response element binding [IDA]
- transcription factor binding [IPI]
RELA
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- T cell receptor signaling pathway [TAS]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular defense response [NAS]
- cellular response to hydrogen peroxide [IDA]
- cellular response to interleukin-1 [IDA]
- cellular response to interleukin-6 [IMP]
- cellular response to nicotine [IMP]
- cellular response to peptide hormone stimulus [IMP]
- cellular response to tumor necrosis factor [IDA]
- cytokine-mediated signaling pathway [IDA]
- defense response to virus [NAS]
- inflammatory response [IDA]
- innate immune response [TAS]
- membrane protein intracellular domain proteolysis [TAS]
- negative regulation of apoptotic process [IDA, TAS]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- neurotrophin TRK receptor signaling pathway [TAS]
- nucleotide-binding oligomerization domain containing 2 signaling pathway [IDA]
- positive regulation of I-kappaB kinase/NF-kappaB signaling [IEP]
- positive regulation of NF-kappaB transcription factor activity [IDA, TAS]
- positive regulation of cell proliferation [IDA]
- positive regulation of miRNA metabolic process [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- positive regulation of transcription, DNA-templated [IDA]
- positive regulation of type I interferon production [TAS]
- regulation of inflammatory response [ISS]
- response to UV-B [IDA]
- response to interleukin-1 [IGI]
- response to organic substance [IDA]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
Gene Ontology Molecular Function- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- NF-kappaB binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity [IDA]
- RNA polymerase II distal enhancer sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- activating transcription factor binding [IPI]
- chromatin binding [IDA]
- identical protein binding [IDA, IPI]
- phosphate ion binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein kinase binding [IPI]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Activation of the serum response factor by p65/NF-kappaB.
This study demonstrates that the NF-kappaB subunit p65 can act like an accessory protein for the serum response factor (SRF) in transfection assays. p65 functionally synergizes with SRF to activate the transcription of a reporter construct dependent only on the serum response element (SRE). The synergy of the two factors requires neither a kappaB motif nor direct contact of p65 ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID