BAIT

ACS2

acetate--CoA ligase ACS2, L000003111, YLR153C
Acetyl-coA synthetase isoform; along with Acs1p, acetyl-coA synthetase isoform is the nuclear source of acetyl-coA for histone acetylation; mutants affect global transcription; required for growth on glucose; expressed under anaerobic conditions
GO Process (3)
GO Function (2)
GO Component (3)
Saccharomyces cerevisiae (S288c)
PREY

GET2

HUR2, RMD7, YER083C
Subunit of the GET complex; involved in insertion of proteins into the ER membrane; required for the retrieval of HDEL proteins from the Golgi to the ER in an ERD2 dependent fashion and for meiotic nuclear division
GO Process (2)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

Nucleocytosolic acetyl-coenzyme a synthetase is required for histone acetylation and global transcription.

Takahashi H, McCaffery JM, Irizarry RA, Boeke JD

Metabolic enzymes rarely regulate informational processes like gene expression. Yeast acetyl-CoA synthetases (Acs1p and 2p) are exceptional, as they are important not only for carbon metabolism but also are shown here to supply the acetyl-CoA for histone acetylation by histone acetyltransferases (HATs). acs2-Ts mutants exhibit global histone deacetylation, transcriptional defects, and synthetic growth defects with HAT mutants at high temperatures. ... [more]

Mol. Cell Jul. 21, 2006; 23(2);207-17 [Pubmed: 16857587]

Throughput

  • Low Throughput

Ontology Terms

  • heat sensitivity (APO:0000147)
  • inviable (APO:0000112)

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
ACS2 GET2
Synthetic Growth Defect
Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Low/High-BioGRID
283738

Curated By

  • BioGRID