CCND1
Gene Ontology Biological Process
- G1/S transition of mitotic cell cycle [IDA, TAS]
- Notch signaling pathway [TAS]
- cellular response to DNA damage stimulus [IDA]
- mitotic G1 DNA damage checkpoint [IDA]
- mitotic cell cycle [TAS]
- negative regulation of cell cycle arrest [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of G2/M transition of mitotic cell cycle [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity [IDA]
- positive regulation of protein phosphorylation [IDA]
- response to UV-A [IDA]
- response to drug [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
STAT3
Gene Ontology Biological Process
- JAK-STAT cascade [TAS]
- JAK-STAT cascade involved in growth hormone signaling pathway [IDA, ISS, TAS]
- astrocyte differentiation [ISS]
- cellular component movement [TAS]
- cellular response to hormone stimulus [IDA]
- cytokine-mediated signaling pathway [NAS]
- eating behavior [ISS]
- eye photoreceptor cell differentiation [ISS]
- glucose homeostasis [ISS]
- growth hormone receptor signaling pathway [IDA]
- interleukin-6-mediated signaling pathway [IDA]
- intracellular receptor signaling pathway [IDA]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- nervous system development [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- phosphorylation [ISS]
- positive regulation of Notch signaling pathway [ISS]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [ISS]
- protein import into nucleus [IDA]
- radial glial cell differentiation [ISS]
- regulation of transcription from RNA polymerase II promoter [ISS]
- regulation of transcription, DNA-templated [IDA]
- response to estradiol [IDA]
- sexual reproduction [ISS]
- signal transduction [TAS]
- temperature homeostasis [ISS]
Gene Ontology Molecular Function- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- DNA binding [ISS]
- RNA polymerase II repressing transcription factor binding [IPI]
- ligand-activated sequence-specific DNA binding RNA polymerase II transcription factor activity [IDA]
- protein binding [IPI]
- protein dimerization activity [ISS]
- protein kinase binding [ISS]
- protein phosphatase binding [IPI]
- sequence-specific DNA binding transcription factor activity [TAS]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Cyclin D1 represses STAT3 activation through a Cdk4-independent mechanism.
STAT3 transcription factors are cytoplasmic proteins that induce gene activation in response to cytokine receptor stimulation. Following tyrosine phosphorylation, STAT3 proteins dimerize, translocate into the nucleus, and activate specific target genes. Activation is transient, and down-regulation of STAT3 signaling occurs within a few hours. In this study, we show that cyclin D1 inhibits STAT3 activation. In co-immunoprecipitation and pull-down assays, ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| CCND1 STAT3 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| STAT3 CCND1 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID