BAIT
SMAD2
JV18, JV18-1, MADH2, MADR2, hMAD-2, hSMAD2
SMAD family member 2
GO Process (28)
GO Function (18)
GO Component (9)
Gene Ontology Biological Process
- SMAD protein complex assembly [IDA]
- activin receptor signaling pathway [IMP]
- anterior/posterior pattern specification [ISS]
- cell fate commitment [ISS]
- common-partner SMAD protein phosphorylation [IDA]
- gastrulation [TAS]
- gene expression [TAS]
- intracellular signal transduction [ISS]
- mesoderm formation [ISS]
- negative regulation of transcription from RNA polymerase II promoter [TAS]
- negative regulation of transcription, DNA-templated [IMP]
- negative regulation of transforming growth factor beta receptor signaling pathway [TAS]
- nodal signaling pathway [IMP]
- palate development [ISS]
- paraxial mesoderm morphogenesis [ISS]
- positive regulation of BMP signaling pathway [IMP]
- positive regulation of epithelial to mesenchymal transition [ISS]
- positive regulation of nodal signaling pathway involved in determination of lateral mesoderm left/right asymmetry [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IDA, ISS, TAS]
- positive regulation of transcription, DNA-templated [IDA, IMP, ISS]
- primary miRNA processing [TAS]
- regulation of binding [ISS]
- regulation of transforming growth factor beta receptor signaling pathway [IMP]
- response to cholesterol [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
- transcription, DNA-templated [TAS]
- transforming growth factor beta receptor signaling pathway [IDA, IMP, TAS]
- zygotic specification of dorsal/ventral axis [IMP]
Gene Ontology Molecular Function- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- SMAD binding [IPI]
- activating transcription factor binding [IPI]
- co-SMAD binding [IPI]
- double-stranded DNA binding [ISS]
- enhancer binding [IC]
- phosphatase binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transforming growth factor beta receptor binding [IPI]
- transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity [IDA]
- type I transforming growth factor beta receptor binding [IPI]
- ubiquitin protein ligase binding [IPI]
- DNA binding [IDA]
- I-SMAD binding [IPI]
- R-SMAD binding [IPI]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IDA]
- SMAD binding [IPI]
- activating transcription factor binding [IPI]
- co-SMAD binding [IPI]
- double-stranded DNA binding [ISS]
- enhancer binding [IC]
- phosphatase binding [IPI]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- transcription factor binding [IPI]
- transforming growth factor beta receptor binding [IPI]
- transforming growth factor beta receptor, pathway-specific cytoplasmic mediator activity [IDA]
- type I transforming growth factor beta receptor binding [IPI]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
PREY
CORO2A
CLIPINB, IR10, WDR2
coronin, actin binding protein, 2A
GO Process (2)
GO Function (1)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Charting the molecular links between driver and susceptibility genes in colorectal cancer.
Despite significant advances in the identification of specific genes and pathways important in the onset and progression of colorectal cancer (CRC), mechanistic insight into the relationship between driver and susceptibility genes is needed. In this paper, we systematically explore physical interactions between causative and putative CRC susceptibility genes to reveal the molecular mechanisms involved in tumor biology. In total, we ... [more]
Unknown Mar. 21, 2014; 445(4);734-8 [Pubmed: 24412244]
Throughput
- High Throughput
Curated By
- BioGRID