BAIT
KRAS
C-K-RAS, CFC2, K-RAS2A, K-RAS2B, K-RAS4A, K-RAS4B, KI-RAS, KRAS1, KRAS2, NS, NS3, RASK2
Kirsten rat sarcoma viral oncogene homolog
GO Process (16)
GO Function (2)
GO Component (5)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- MAPK cascade [TAS]
- Ras protein signal transduction [TAS]
- activation of MAPKK activity [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- innate immune response [TAS]
- insulin receptor signaling pathway [TAS]
- leukocyte migration [TAS]
- neurotrophin TRK receptor signaling pathway [TAS]
- positive regulation of cell proliferation [IMP]
- positive regulation of gene expression [IMP]
- positive regulation of protein phosphorylation [IMP]
- small GTPase mediated signal transduction [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
IGFBP3
BP-53, IBP3, tcag7.703
insulin-like growth factor binding protein 3
GO Process (11)
GO Function (7)
GO Component (5)
Gene Ontology Biological Process
- cellular protein metabolic process [TAS]
- negative regulation of cell proliferation [IGI]
- negative regulation of protein phosphorylation [IDA]
- negative regulation of signal transduction [NAS]
- negative regulation of smooth muscle cell migration [IDA]
- negative regulation of smooth muscle cell proliferation [IDA]
- positive regulation of apoptotic process [IMP]
- positive regulation of catalytic activity [IDA]
- positive regulation of myoblast differentiation [IDA]
- protein phosphorylation [IDA]
- regulation of insulin-like growth factor receptor signaling pathway [IBA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Charting the molecular links between driver and susceptibility genes in colorectal cancer.
Despite significant advances in the identification of specific genes and pathways important in the onset and progression of colorectal cancer (CRC), mechanistic insight into the relationship between driver and susceptibility genes is needed. In this paper, we systematically explore physical interactions between causative and putative CRC susceptibility genes to reveal the molecular mechanisms involved in tumor biology. In total, we ... [more]
Unknown Mar. 21, 2014; 445(4);734-8 [Pubmed: 24412244]
Throughput
- High Throughput
Curated By
- BioGRID