CDK2
Gene Ontology Biological Process
- DNA damage response, signal transduction by p53 class mediator resulting in cell cycle arrest [TAS]
- DNA replication [TAS]
- G1/S transition of mitotic cell cycle [TAS]
- G2/M transition of mitotic cell cycle [NAS, TAS]
- Ras protein signal transduction [IEP]
- anaphase-promoting complex-dependent proteasomal ubiquitin-dependent protein catabolic process [TAS]
- blood coagulation [TAS]
- cellular response to nitric oxide [TAS]
- centrosome duplication [TAS]
- histone phosphorylation [IDA]
- meiotic nuclear division [TAS]
- mitotic G1 DNA damage checkpoint [TAS]
- mitotic cell cycle [TAS]
- positive regulation of cell proliferation [IDA]
- regulation of gene silencing [IDA]
- regulation of ubiquitin-protein ligase activity involved in mitotic cell cycle [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
RRN3
Gene Ontology Biological Process
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
mTOR-dependent activation of the transcription factor TIF-IA links rRNA synthesis to nutrient availability.
In cycling cells, transcription of ribosomal RNA genes by RNA polymerase I (Pol I) is tightly coordinated with cell growth. Here, we show that the mammalian target of rapamycin (mTOR) regulates Pol I transcription by modulating the activity of TIF-IA, a regulatory factor that senses nutrient and growth-factor availability. Inhibition of mTOR signaling by rapamycin inactivates TIF-IA and impairs transcription-initiation ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID