BAIT

ADA2

SWI8, chromatin-binding transcription regulator ADA2, L000000029, YDR448W
Transcription coactivator; component of the ADA and SAGA transcriptional adaptor/HAT (histone acetyltransferase) complexes
Saccharomyces cerevisiae (S288c)
PREY

DST1

PPR2, SII, S-II, TFIIS, P37, L000001476, L000000530, YGL043W
General transcription elongation factor TFIIS; enables RNA polymerase II to read through blocks to elongation by stimulating cleavage of nascent transcripts stalled at transcription arrest sites; maintains RNAPII elongation activity on ribosomal protein genes during conditions of transcriptional stress
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.

Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]

Genes Dev. Aug. 01, 2008; 22(15);2062-74 [Pubmed: 18676811]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
  • Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.

Curated By

  • BioGRID