BAIT
CDC20
PAC5, ubiquitin-protein transferase activating protein CDC20, L000000259, YGL116W
Activator of anaphase-promoting complex/cyclosome (APC/C); APC/C is required for metaphase/anaphase transition; directs ubiquitination of mitotic cyclins, Pds1p, and other anaphase inhibitors; cell-cycle regulated; potential Cdc28p substrate; relative distribution to the nucleus increases upon DNA replication stress
GO Process (7)
GO Function (2)
GO Component (4)
Gene Ontology Biological Process
- activation of anaphase-promoting complex activity involved in meiotic cell cycle [IMP]
- activation of mitotic anaphase-promoting complex activity [IMP]
- mitotic spindle assembly checkpoint [IPI]
- negative regulation of cyclin-dependent protein serine/threonine kinase by cyclin degradation [IMP]
- positive regulation of mitotic metaphase/anaphase transition [IMP]
- positive regulation of protein catabolic process [IMP]
- regulation of meiosis [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
PREY
VMA1
CLS8, TFP1, H(+)-transporting V1 sector ATPase subunit A, L000002289, YDL185W
Subunit A of the V1 peripheral membrane domain of V-ATPase; protein precursor undergoes self-catalyzed splicing to yield the extein Tfp1p and the intein Vde (PI-SceI), which is a site-specific endonuclease; the V1 peripheral membrane domain of the vacuolar H+-ATPase (V-ATPase) has eight subunits; involved in methionine restriction extension of chronological lifespan in an autophagy-dependent manner
GO Process (3)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Saccharomyces cerevisiae (S288c)
Synthetic Lethality
A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.
Publication
A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.
Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]
Genes Dev. Aug. 01, 2008; 22(15);2062-74 [Pubmed: 18676811]
Throughput
- High Throughput|Low Throughput
Ontology Terms
- phenotype: inviable (APO:0000112)
Additional Notes
- High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
- Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.
Curated By
- BioGRID