EAF3
Gene Ontology Biological Process
- DNA repair [IDA]
- histone acetylation [IDA]
- histone deacetylation [IMP]
- negative regulation of antisense RNA transcription [IMP]
- negative regulation of transcription, DNA-templated [IMP]
- regulation of DNA-dependent DNA replication initiation [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
- transcription elongation from RNA polymerase II promoter [IGI]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
HTZ1
Gene Ontology Biological Process
Gene Ontology Molecular Function- chromatin binding [IDA, IGI, ISS]
- chromatin binding [IDA, IGI, ISS]
Gene Ontology Cellular Component
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.
Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]
Throughput
- High Throughput|Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
- Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
EAF3 HTZ1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.7393 | BioGRID | 220109 | |
HTZ1 EAF3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1669 | BioGRID | 413691 | |
HTZ1 EAF3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1943 | BioGRID | 2178457 | |
HTZ1 EAF3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | - | BioGRID | 3395216 | |
HTZ1 EAF3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -3.2349 | BioGRID | 325942 | |
HTZ1 EAF3 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -2.527 | BioGRID | 311021 | |
HTZ1 EAF3 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 517495 | |
EAF3 HTZ1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | High | - | BioGRID | 452910 |
Curated By
- BioGRID