ESA1
Gene Ontology Biological Process
- DNA repair [IDA, IMP]
- DNA-templated transcription, elongation [IDA, IMP]
- chromatin organization involved in regulation of transcription [IMP]
- chromatin silencing at rDNA [IGI, IMP]
- histone acetylation [IDA]
- peptidyl-lysine acetylation [IMP]
- positive regulation of macroautophagy [IMP]
- positive regulation of transcription elongation from RNA polymerase II promoter [IGI, IMP]
- regulation of cell cycle [IMP]
- regulation of transcription from RNA polymerase II promoter [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
ASF1
Gene Ontology Biological Process
- DNA replication-dependent nucleosome assembly [IDA]
- DNA replication-independent nucleosome assembly [IDA]
- chromatin silencing at silent mating-type cassette [IGI]
- chromatin silencing at telomere [IGI]
- histone H2B ubiquitination [IMP]
- histone acetylation [IMP]
- histone exchange [IMP]
- nucleosome disassembly [IMP]
- positive regulation of histone acetylation [IDA, IGI, IMP, IPI]
- positive regulation of transcription elongation from RNA polymerase II promoter [IDA]
- regulation of transcription from RNA polymerase II promoter in response to stress [IMP]
Gene Ontology Molecular Function
Synthetic Growth Defect
A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.
Publication
A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.
Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]
Throughput
- High Throughput|Low Throughput
Ontology Terms
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
- Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
ESA1 ASF1 | Biochemical Activity Biochemical Activity An interaction is inferred from the biochemical effect of one protein upon another, for example, GTP-GDP exchange activity or phosphorylation of a substrate by a kinase. The bait protein executes the activity on the substrate hit protein. A Modification value is recorded for interactions of this type with the possible values Phosphorylation, Ubiquitination, Sumoylation, Dephosphorylation, Methylation, Prenylation, Acetylation, Deubiquitination, Proteolytic Processing, Glucosylation, Nedd(Rub1)ylation, Deacetylation, No Modification, Demethylation. | Low | - | BioGRID | 336195 | |
ESA1 ASF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1939 | BioGRID | 416689 | |
ESA1 ASF1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.316 | BioGRID | 2017998 | |
ESA1 ASF1 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low/High | - | BioGRID | 265565 |
Curated By
- BioGRID