BAIT
AUH
AU RNA binding protein/enoyl-CoA hydratase
GO Process (3)
GO Function (3)
GO Component (2)
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
TFAM
MTTF1, MTTFA, TCF6, TCF6L1, TCF6L2, TCF6L3
transcription factor A, mitochondrial
GO Process (8)
GO Function (8)
GO Component (4)
Gene Ontology Biological Process
- DNA-dependent DNA replication [TAS]
- chromatin remodeling [IBA]
- gene expression [TAS]
- positive regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of transcription from RNA polymerase I promoter [TAS]
- transcription from mitochondrial promoter [IMP, TAS]
- transcription initiation from mitochondrial promoter [IDA, TAS]
Gene Ontology Molecular Function- DNA binding, bending [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IC]
- chromatin binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IMP]
- DNA binding, bending [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in positive regulation of transcription [IC]
- chromatin binding [IDA]
- mitochondrial light strand promoter sense binding [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- sequence-specific DNA binding transcription factor activity [IMP]
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
A High-Density Human Mitochondrial Proximity Interaction Network.
We used BioID, a proximity-dependent biotinylation assay with 100 mitochondrial baits from all mitochondrial sub-compartments, to create a high-resolution human mitochondrial proximity interaction network. We identified 1,465 proteins, producing 15,626 unique high-confidence proximity interactions. Of these, 528 proteins were previously annotated as mitochondrial, nearly half of the mitochondrial proteome defined by Mitocarta 2.0. Bait-bait analysis showed a clear separation of ... [more]
Cell Metab. Sep. 01, 2020; 32(3);479-497.e9 [Pubmed: 32877691]
Quantitative Score
- 0.99 [Saint Score]
Throughput
- High Throughput
Additional Notes
- interaction assayed using BioID
- interactions were considered high confidence if they had a Bayesian False Discovery Rate of 1% or less
- the Saint Score for the interaction (or the maximum of any bait-prey combinations that had multiple scores) is shown
Curated By
- BioGRID