BAIT

SIN3

CPE1, GAM2, RPD1, SDI1, SDS16, UME4, transcriptional regulator SIN3, L000001695, YOL004W
Component of both the Rpd3S and Rpd3L histone deacetylase complexes; involved in transcriptional repression and activation of diverse processes, including mating-type switching and meiosis; involved in the maintenance of chromosomal integrity
Saccharomyces cerevisiae (S288c)
PREY

TAM41

MMP37, YGR046W
Mitochondrial phosphatidate cytidylyltransferase (CDP-DAG synthase); required for cardiolipin biosynthesis; viability of null mutant is strain-dependent; mRNA is targeted to the bud; mutant displays defect in mitochondrial protein import, likely due to altered membrane lipid composition
GO Process (1)
GO Function (1)
GO Component (3)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.

Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]

Genes Dev. Aug. 01, 2008; 22(15);2062-74 [Pubmed: 18676811]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
  • Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.

Curated By

  • BioGRID