BAIT

SWC4

EAF2, GOD1, YGR002C
Component of the Swr1p complex that incorporates Htz1p into chromatin; component of the NuA4 histone acetyltransferase complex
GO Process (6)
GO Function (1)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

MED1

YPR070W
Subunit of the RNA polymerase II mediator complex; associates with core polymerase subunits to form the RNA polymerase II holoenzyme; essential for transcriptional regulation
GO Process (2)
GO Function (0)
GO Component (1)
Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.

Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]

Genes Dev. Aug. 01, 2008; 22(15);2062-74 [Pubmed: 18676811]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
  • Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
SWC4 MED1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2363BioGRID
1984065
MED1 SWC4
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.2445BioGRID
2074486
SWC4 MED1
Negative Genetic
Negative Genetic

Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores.

High-0.431BioGRID
2436741

Curated By

  • BioGRID