BAIT

YAF9

S000007495, YNL107W
Subunit of NuA4 histone H4 acetyltransferase and SWR1 complexes; may function to antagonize silencing near telomeres; interacts directly with Swc4p; has homology to human leukemogenic protein AF9; contains a YEATS domain
GO Process (4)
GO Function (0)
GO Component (4)
Saccharomyces cerevisiae (S288c)
PREY

LEA1

YPL213W
Component of U2 snRNP complex; disruption causes reduced U2 snRNP levels; physically interacts with Msl1p; putative homolog of human U2A' snRNP protein
GO Process (1)
GO Function (0)
GO Component (3)

Gene Ontology Biological Process

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Publication

A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation.

Lin YY, Qi Y, Lu JY, Pan X, Yuan DS, Zhao Y, Bader JS, Boeke JD

Histone acetylation and deacetylation are among the principal mechanisms by which chromatin is regulated during transcription, DNA silencing, and DNA repair. We analyzed patterns of genetic interactions uncovered during comprehensive genome-wide analyses in yeast to probe how histone acetyltransferase (HAT) and histone deacetylase (HDAC) protein complexes interact. The genetic interaction data unveil an underappreciated role of HDACs in maintaining cellular ... [more]

Genes Dev. Aug. 01, 2008; 22(15);2062-74 [Pubmed: 18676811]

Throughput

  • High Throughput|Low Throughput

Ontology Terms

  • phenotype: inviable (APO:0000112)

Additional Notes

  • High Throughput: dSLAM analysis was performed to determine genome-wide genetic interaction profiles of 38 query genes involved in histone (de)acetylation.
  • Low Throughput: Genetic interactions identified using dSLAM were validated by tetrad dissection and/or random spore analysis.

Curated By

  • BioGRID