HSPA1A
Gene Ontology Biological Process
- ATP catabolic process [IDA]
- RNA metabolic process [TAS]
- cellular heat acclimation [IMP]
- cellular response to heat [IDA]
- cellular response to oxidative stress [TAS]
- gene expression [TAS]
- mRNA catabolic process [IDA]
- mRNA metabolic process [TAS]
- negative regulation of apoptotic process [IMP, TAS]
- negative regulation of cell death [IDA, IMP]
- negative regulation of cell growth [IMP]
- negative regulation of cell proliferation [IMP]
- negative regulation of extrinsic apoptotic signaling pathway in absence of ligand [IMP]
- negative regulation of inclusion body assembly [IDA]
- negative regulation of protein ubiquitination [IDA]
- positive regulation of erythrocyte differentiation [IMP]
- protein refolding [IDA]
- protein stabilization [TAS]
- regulation of cell death [IMP]
- response to unfolded protein [IDA]
Gene Ontology Molecular Function- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
- ATP binding [IDA]
- ATPase activity [IDA]
- ATPase activity, coupled [IDA]
- G-protein coupled receptor binding [IPI]
- double-stranded RNA binding [IDA]
- enzyme binding [IPI]
- heat shock protein binding [IPI]
- poly(A) RNA binding [IDA]
- protein N-terminus binding [IPI]
- protein binding [IPI]
- protein binding involved in protein folding [IDA]
- ubiquitin protein ligase binding [IPI]
- unfolded protein binding [IDA, NAS, TAS]
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- aggresome [IDA]
- blood microparticle [IDA]
- centriole [IDA]
- cytoplasm [IDA, TAS]
- cytosol [IDA, TAS]
- endoplasmic reticulum [TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- inclusion body [IDA]
- mitochondrion [TAS]
- nuclear speck [IDA]
- nucleus [IDA]
- perinuclear region of cytoplasm [IDA]
- ribonucleoprotein complex [IDA]
- ubiquitin ligase complex [IDA]
- vesicle [IDA]
BCL2
Gene Ontology Biological Process
- B cell proliferation [IDA]
- B cell receptor signaling pathway [IMP]
- apoptotic process [IDA, TAS]
- cellular response to DNA damage stimulus [IMP]
- defense response to virus [IDA]
- endoplasmic reticulum calcium ion homeostasis [TAS]
- extrinsic apoptotic signaling pathway via death domain receptors [IDA]
- female pregnancy [NAS]
- humoral immune response [TAS]
- innate immune response [TAS]
- intrinsic apoptotic signaling pathway [TAS]
- intrinsic apoptotic signaling pathway in response to DNA damage [IBA]
- intrinsic apoptotic signaling pathway in response to endoplasmic reticulum stress [IDA]
- negative regulation of anoikis [IMP]
- negative regulation of apoptotic process [IDA, IMP]
- negative regulation of apoptotic signaling pathway [IMP]
- negative regulation of autophagy [TAS]
- negative regulation of cellular pH reduction [IDA]
- negative regulation of extrinsic apoptotic signaling pathway in absence of ligand [IGI]
- negative regulation of intrinsic apoptotic signaling pathway [IDA]
- negative regulation of mitochondrial depolarization [TAS]
- negative regulation of neuron apoptotic process [IDA]
- neuron apoptotic process [TAS]
- nucleotide-binding domain, leucine rich repeat containing receptor signaling pathway [TAS]
- positive regulation of B cell proliferation [IMP]
- positive regulation of cell growth [IDA]
- positive regulation of intrinsic apoptotic signaling pathway [TAS]
- positive regulation of protein insertion into mitochondrial membrane involved in apoptotic signaling pathway [TAS]
- protein polyubiquitination [IDA]
- regulation of calcium ion transport [IDA]
- regulation of mitochondrial membrane permeability [ISS]
- regulation of mitochondrial membrane potential [ISS]
- regulation of protein heterodimerization activity [IDA]
- regulation of protein homodimerization activity [IDA]
- regulation of transmembrane transporter activity [IDA]
- release of cytochrome c from mitochondria [ISS, NAS]
- response to cytokine [IDA]
- response to drug [IDA, IMP]
- response to iron ion [IDA]
- response to nicotine [IDA]
- response to radiation [NAS]
- response to toxic substance [IDA]
- transmembrane transport [IDA]
Gene Ontology Molecular Function- BH3 domain binding [IPI]
- channel activity [IDA]
- channel inhibitor activity [IDA]
- identical protein binding [IPI]
- protease binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
- BH3 domain binding [IPI]
- channel activity [IDA]
- channel inhibitor activity [IDA]
- identical protein binding [IPI]
- protease binding [IDA]
- protein binding [IPI]
- protein heterodimerization activity [IPI]
- protein homodimerization activity [IPI]
- sequence-specific DNA binding [IDA]
- ubiquitin protein ligase binding [IPI]
Gene Ontology Cellular Component
Affinity Capture-Western
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins.
Publication
Prior heat stress inhibits apoptosis in adenosine triphosphate-depleted renal tubular cells.
BACKGROUND: This study tested the following hypotheses: (a) renal tubular epithelial cells subjected to transient adenosine triphosphate (ATP) depletion undergo apoptosis, and (b) induction of heat stress proteins (HSPs) inhibits cell death following ATP depletion, possibly by interacting with anti-apoptotic signal proteins. METHODS: To simulate ischemia in vivo, cells derived from opossum kidney proximal tubule (OK) were subjected to ATP ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID