VDR
Gene Ontology Biological Process
- bile acid signaling pathway [IDA]
- cell morphogenesis [IMP]
- decidualization [IEP]
- gene expression [TAS]
- negative regulation of cell proliferation [IDA]
- negative regulation of keratinocyte proliferation [IMP]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- negative regulation of transcription, DNA-templated [IDA]
- positive regulation of gene expression [IMP]
- positive regulation of keratinocyte differentiation [IMP]
- positive regulation of transcription from RNA polymerase II promoter [IMP]
- positive regulation of vitamin D 24-hydroxylase activity [IDA]
- regulation of calcidiol 1-monooxygenase activity [ISS]
- signal transduction [TAS]
- transcription initiation from RNA polymerase II promoter [TAS]
- vitamin D receptor signaling pathway [IDA]
Gene Ontology Molecular Function- DNA binding [IDA]
- calcitriol binding [IDA]
- calcitriol receptor activity [IDA]
- lithocholic acid binding [IDA]
- lithocholic acid receptor activity [IDA]
- protein binding [IPI]
- retinoid X receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- vitamin D response element binding [IDA]
- DNA binding [IDA]
- calcitriol binding [IDA]
- calcitriol receptor activity [IDA]
- lithocholic acid binding [IDA]
- lithocholic acid receptor activity [IDA]
- protein binding [IPI]
- retinoid X receptor binding [IPI]
- sequence-specific DNA binding transcription factor activity [IDA]
- vitamin D response element binding [IDA]
Gene Ontology Cellular Component
FOS
Gene Ontology Biological Process
- DNA methylation [TAS]
- Fc-epsilon receptor signaling pathway [TAS]
- MyD88-dependent toll-like receptor signaling pathway [TAS]
- MyD88-independent toll-like receptor signaling pathway [TAS]
- SMAD protein signal transduction [IDA]
- TRIF-dependent toll-like receptor signaling pathway [TAS]
- cellular response to reactive oxygen species [IDA]
- inflammatory response [TAS]
- innate immune response [TAS]
- positive regulation of transcription, DNA-templated [IDA]
- regulation of sequence-specific DNA binding transcription factor activity [TAS]
- regulation of transcription from RNA polymerase II promoter [TAS]
- stress-activated MAPK cascade [TAS]
- toll-like receptor 10 signaling pathway [TAS]
- toll-like receptor 2 signaling pathway [TAS]
- toll-like receptor 3 signaling pathway [TAS]
- toll-like receptor 4 signaling pathway [TAS]
- toll-like receptor 5 signaling pathway [TAS]
- toll-like receptor 9 signaling pathway [TAS]
- toll-like receptor TLR1:TLR2 signaling pathway [TAS]
- toll-like receptor TLR6:TLR2 signaling pathway [TAS]
- toll-like receptor signaling pathway [TAS]
- transforming growth factor beta receptor signaling pathway [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- nucleoplasm [IDA, TAS]
- nucleus [TAS]
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
A two-hit mechanism for vitamin D3-mediated transcriptional repression of the granulocyte-macrophage colony-stimulating factor gene: vitamin D receptor competes for DNA binding with NFAT1 and stabilizes c-Jun.
We previously described a control element in the granulocyte-macrophage colony-stimulating factor (GM-CSF) enhancer that is necessary and sufficient to mediate both transcriptional activation in response to T-cell stimuli and transcriptional repression by 1,25-dihydroxyvitamin D3 [1,25(OH)2D3] through the vitamin D3 receptor (VDR). This DNA element is a composite site that is recognized by both Fos-Jun and NFAT1; it is directly bound ... [more]
Throughput
- Low Throughput
Curated By
- BioGRID