RIM9
Gene Ontology Biological Process
Gene Ontology Cellular Component
NRG1
Gene Ontology Biological Process
- cellular hyperosmotic salinity response [IMP, IPI]
- negative regulation of cellular hyperosmotic salinity response by negative regulation of transcription from RNA polymerase II promoter [IGI]
- negative regulation of cellular response to alkaline pH by negative regulation of transcription from RNA polymerase II promoter [IMP, IPI]
- negative regulation of invasive growth in response to glucose limitation [IGI]
- negative regulation of invasive growth in response to glucose limitation by negative regulation of transcription from RNA polymerase II promoter [IGI]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription from RNA polymerase II promoter by glucose [IGI, IMP]
- pseudohyphal growth [IGI]
- single-species surface biofilm formation [IMP]
Gene Ontology Molecular Function- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, ISM]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI]
- sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA, ISM]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA, IMP]
- RNA polymerase II repressing transcription factor binding [IPI]
- RNA polymerase II transcription factor binding transcription factor activity involved in negative regulation of transcription [IGI]
- sequence-specific DNA binding [IDA]
Synthetic Rescue
A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene.
Publication
The pH-sensing Rim101 pathway positively regulates the transcriptional expression of the calcium pump gene PMR1 to affect calcium sensitivity in budding yeast.
In Saccharomyces cerevisiae, the Rim101 pathway senses extracellular pH changes through a complex consisted of Rim8, Rim9 and Rim21 at the plasma membrane. Activation of this sensor complex induces a proteolytical complex composed of Rim13 and Rim20 and leads to the C-terminal processing and activation of the transcription factor Rim101. Deletion mutants for RIM8, RIM9, RIM13, RIM20, RIM21 and RIM101 ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: resistance to chemicals (APO:0000087)
- phenotype: vegetative growth (APO:0000106)
Additional Notes
- CaCl2 sensitivity
- Figure 2
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
RIM9 NRG1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1616 | BioGRID | 404427 | |
RIM9 NRG1 | Negative Genetic Negative Genetic Mutations/deletions in separate genes, each of which alone causes a minimal phenotype, but when combined in the same cell results in a more severe fitness defect or lethality under a given condition. This term is reserved for high or low throughput studies with scores. | High | -0.1934 | BioGRID | 2161647 |
Curated By
- BioGRID