PIN1
Gene Ontology Biological Process
- cytokine-mediated signaling pathway [TAS]
- innate immune response [TAS]
- negative regulation of ERK1 and ERK2 cascade [IDA]
- negative regulation of cell motility [IDA]
- negative regulation of transforming growth factor beta receptor signaling pathway [IDA]
- negative regulation of type I interferon production [TAS]
- positive regulation of Rho GTPase activity [IMP]
- positive regulation of protein phosphorylation [IGI]
- positive regulation of ubiquitin-protein transferase activity [IDA]
- protein peptidyl-prolyl isomerization [IDA]
- regulation of cytokinesis [IGI, IMP]
- regulation of mitosis [TAS]
- regulation of pathway-restricted SMAD protein phosphorylation [IDA]
Gene Ontology Molecular Function
RUNX2
Gene Ontology Biological Process
- BMP signaling pathway [ISS]
- cellular response to BMP stimulus [ISS]
- gene expression [TAS]
- negative regulation of transcription, DNA-templated [IDA]
- ossification [TAS]
- osteoblast differentiation [IEP, TAS]
- positive regulation of transcription from RNA polymerase II promoter involved in cellular response to chemical stimulus [ISS]
- positive regulation of transcription, DNA-templated [IDA]
- transcription initiation from RNA polymerase II promoter [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Reconstituted Complex
An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator.
Publication
Prolyl isomerase Pin1 enhances osteoblast differentiation through Runx2 regulation.
Peptidyl-prolyl isomerase 1 (Pin1) is the only enzyme known to catalyze isomerization of the pSer/Thr-Pro peptide bond. Pin1 induces conformational change of substrates and subsequently regulates diverse cellular processes. However, its role in osteoblast differentiation is not well understood. Here we show that Pin1 enhances osteoblast differentiation. Pin1 interacts and affects the protein stability and transcriptional activity of an important ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| PIN1 RUNX2 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - | |
| RUNX2 PIN1 | Affinity Capture-Western Affinity Capture-Western An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner identified by Western blot with a specific polyclonal antibody or second epitope tag. This category is also used if an interacting protein is visualized directly by dye stain or radioactivity. Note that this differs from any co-purification experiment involving affinity capture in that the co-purification experiment involves at least one extra purification step to get rid of potential contaminating proteins. | Low | - | BioGRID | - |
Curated By
- BioGRID