HSPA5
Gene Ontology Biological Process
- ATP catabolic process [ISS]
- ER-associated ubiquitin-dependent protein catabolic process [TAS]
- activation of signaling protein activity involved in unfolded protein response [TAS]
- blood coagulation [TAS]
- cellular protein metabolic process [TAS]
- cellular response to glucose starvation [IDA]
- endoplasmic reticulum unfolded protein response [TAS]
- maintenance of protein localization in endoplasmic reticulum [IMP]
- negative regulation of apoptotic process [IMP, TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cell migration [IMP]
- regulation of protein folding in endoplasmic reticulum [TAS]
- substantia nigra development [IEP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- COP9 signalosome [IDA]
- endoplasmic reticulum [IDA, IMP, TAS]
- endoplasmic reticulum chaperone complex [IDA]
- endoplasmic reticulum lumen [TAS]
- endoplasmic reticulum membrane [TAS]
- endoplasmic reticulum-Golgi intermediate compartment [IDA]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- integral component of endoplasmic reticulum membrane [IDA]
- membrane [IDA]
- midbody [IDA]
- nucleus [IDA, IMP]
CALU
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
Comprehensive interactome profiling of the human Hsp70 network highlights functional differentiation of J domains.
Hsp70s comprise a deeply conserved chaperone family that has a central role in maintaining protein homeostasis. In humans, Hsp70 client specificity is provided by 49 different co-factors known as J domain proteins (JDPs). However, the cellular function and client specificity of JDPs have largely remained elusive. We have combined affinity purification-mass spectrometry (AP-MS) and proximity-dependent biotinylation (BioID) to characterize the ... [more]
Quantitative Score
- 460.0 [FoldChange]
Throughput
- High Throughput
Additional Notes
- BioID
- High confidence proximal protein interactions had an average probability of the identified interaction (AvgP) >= 0.98. The associated score represents the fold change of spectral counts (or intensities) for each individual interaction.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
HSPA5 CALU | Affinity Capture-MS Affinity Capture-MS An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods. | Low/High | - | BioGRID | 938399 | |
CALU HSPA5 | Proximity Label-MS Proximity Label-MS An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods. | High | 4.57 | BioGRID | 2981548 |
Curated By
- BioGRID