BAIT
CALM1
CALML2, CAMI, CPVT4, DD132, PHKD, caM
calmodulin 1 (phosphorylase kinase, delta)
GO Process (43)
GO Function (11)
GO Component (13)
Gene Ontology Biological Process
- Fc-epsilon receptor signaling pathway [TAS]
- G-protein coupled receptor signaling pathway [TAS]
- activation of phospholipase C activity [TAS]
- blood coagulation [TAS]
- carbohydrate metabolic process [TAS]
- detection of calcium ion [IMP]
- epidermal growth factor receptor signaling pathway [TAS]
- fibroblast growth factor receptor signaling pathway [TAS]
- glucose metabolic process [TAS]
- glycogen catabolic process [TAS]
- innate immune response [TAS]
- inositol phosphate metabolic process [TAS]
- membrane organization [TAS]
- muscle contraction [TAS]
- negative regulation of peptidyl-threonine phosphorylation [TAS]
- negative regulation of ryanodine-sensitive calcium-release channel activity [ISS]
- neurotrophin TRK receptor signaling pathway [TAS]
- nitric oxide metabolic process [TAS]
- phototransduction, visible light [TAS]
- platelet activation [TAS]
- platelet degranulation [TAS]
- positive regulation of cyclic nucleotide metabolic process [IDA]
- positive regulation of cyclic-nucleotide phosphodiesterase activity [IDA]
- positive regulation of peptidyl-threonine phosphorylation [TAS]
- positive regulation of phosphoprotein phosphatase activity [IDA]
- positive regulation of protein autophosphorylation [TAS]
- positive regulation of protein dephosphorylation [IDA]
- positive regulation of protein serine/threonine kinase activity [TAS]
- positive regulation of ryanodine-sensitive calcium-release channel activity [IDA]
- regulation of cardiac muscle contraction [IMP]
- regulation of cardiac muscle contraction by regulation of the release of sequestered calcium ion [IC]
- regulation of cell communication by electrical coupling involved in cardiac conduction [IC]
- regulation of cytokinesis [IMP]
- regulation of heart rate [IMP]
- regulation of nitric-oxide synthase activity [TAS]
- regulation of release of sequestered calcium ion into cytosol by sarcoplasmic reticulum [IDA]
- regulation of rhodopsin mediated signaling pathway [TAS]
- response to calcium ion [IDA]
- rhodopsin mediated signaling pathway [TAS]
- signal transduction [TAS]
- small molecule metabolic process [TAS]
- substantia nigra development [IEP]
- synaptic transmission [TAS]
Gene Ontology Molecular Function- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
- N-terminal myristoylation domain binding [IPI]
- calcium ion binding [IDA, ISS]
- ion channel binding [IPI]
- phospholipase binding [IPI]
- protein binding [IPI]
- protein domain specific binding [IPI]
- protein kinase binding [IPI]
- protein phosphatase activator activity [IDA]
- protein serine/threonine kinase activator activity [TAS]
- thioesterase binding [IPI]
- titin binding [IPI]
Gene Ontology Cellular Component
Homo sapiens
PREY
PARK7
DJ-1, DJ1, HEL-S-67p, CTA-215D11.1
parkinson protein 7
GO Process (59)
GO Function (27)
GO Component (9)
Gene Ontology Biological Process
- Ras protein signal transduction [TAS]
- activation of protein kinase B activity [IC]
- cellular response to glyoxal [IDA]
- cellular response to hydrogen peroxide [IDA]
- cellular response to oxidative stress [IDA, IMP]
- glycolate biosynthetic process [IDA]
- glyoxal catabolic process [IDA]
- hydrogen peroxide metabolic process [IDA]
- lactate biosynthetic process [IDA]
- methylglyoxal catabolic process to D-lactate [IDA]
- mitochondrion organization [ISS]
- negative regulation of TRAIL-activated apoptotic signaling pathway [IMP]
- negative regulation of apoptotic process [IDA]
- negative regulation of cell death [IDA]
- negative regulation of cysteine-type endopeptidase activity involved in apoptotic signaling pathway [IMP]
- negative regulation of death-inducing signaling complex assembly [IC]
- negative regulation of extrinsic apoptotic signaling pathway [IMP]
- negative regulation of gene expression [IDA]
- negative regulation of hydrogen peroxide-induced cell death [IMP]
- negative regulation of hydrogen peroxide-induced neuron death [IDA]
- negative regulation of neuron apoptotic process [IDA]
- negative regulation of neuron death [IDA]
- negative regulation of oxidative stress-induced cell death [IDA]
- negative regulation of oxidative stress-induced neuron intrinsic apoptotic signaling pathway [IDA]
- negative regulation of proteasomal ubiquitin-dependent protein catabolic process [IDA]
- negative regulation of protein K48-linked deubiquitination [IDA]
- negative regulation of protein acetylation [IDA]
- negative regulation of protein binding [IDA, IGI, IMP]
- negative regulation of protein export from nucleus [IGI]
- negative regulation of protein kinase activity [IGI]
- negative regulation of protein phosphorylation [IGI]
- negative regulation of protein sumoylation [IDA]
- negative regulation of protein ubiquitination [IDA]
- negative regulation of ubiquitin-protein transferase activity [IDA]
- negative regulation of ubiquitin-specific protease activity [IDA]
- positive regulation of L-dopa biosynthetic process [IMP]
- positive regulation of L-dopa decarboxylase activity [IDA]
- positive regulation of androgen receptor activity [IMP]
- positive regulation of dopamine biosynthetic process [IC, IDA]
- positive regulation of gene expression [TAS]
- positive regulation of interleukin-8 production [IDA]
- positive regulation of mitochondrial electron transport, NADH to ubiquinone [IMP]
- positive regulation of peptidyl-serine phosphorylation [IMP]
- positive regulation of protein homodimerization activity [IDA]
- positive regulation of protein kinase B signaling [IC]
- positive regulation of protein localization to nucleus [IDA, IMP]
- positive regulation of pyrroline-5-carboxylate reductase activity [IDA]
- positive regulation of sequence-specific DNA binding transcription factor activity [IMP, TAS]
- positive regulation of superoxide dismutase activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, IGI, IMP]
- positive regulation of transcription regulatory region DNA binding [IMP]
- positive regulation of tyrosine 3-monooxygenase activity [IDA]
- protein stabilization [IDA, IMP]
- regulation of TRAIL receptor biosynthetic process [IMP]
- regulation of androgen receptor signaling pathway [IDA]
- regulation of fibril organization [TAS]
- regulation of inflammatory response [ISS]
- regulation of mitochondrial membrane potential [IMP]
- regulation of neuron apoptotic process [IDA]
Gene Ontology Molecular Function- L-dopa decarboxylase activator activity [IDA]
- androgen receptor binding [IPI]
- core promoter binding [IC]
- cupric ion binding [IDA]
- cuprous ion binding [IDA]
- cytokine binding [IPI]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- glyoxalase (glycolic acid-forming) activity [IDA]
- glyoxalase III activity [IDA]
- identical protein binding [IPI]
- mRNA binding [IDA]
- oxidoreductase activity, acting on peroxide as acceptor [IDA]
- peptidase activity [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- receptor binding [IPI]
- repressing transcription factor binding [IPI]
- scaffold protein binding [IPI]
- single-stranded DNA binding [IDA]
- small protein activating enzyme binding [IPI]
- small protein conjugating enzyme binding [IPI]
- superoxide dismutase copper chaperone activity [IDA]
- transcription coactivator activity [IGI, TAS]
- transcription factor binding [IPI]
- tyrosine 3-monooxygenase activator activity [IDA]
- ubiquitin-specific protease binding [IPI]
- L-dopa decarboxylase activator activity [IDA]
- androgen receptor binding [IPI]
- core promoter binding [IC]
- cupric ion binding [IDA]
- cuprous ion binding [IDA]
- cytokine binding [IPI]
- double-stranded DNA binding [IDA]
- enzyme binding [IPI]
- glyoxalase (glycolic acid-forming) activity [IDA]
- glyoxalase III activity [IDA]
- identical protein binding [IPI]
- mRNA binding [IDA]
- oxidoreductase activity, acting on peroxide as acceptor [IDA]
- peptidase activity [IDA]
- protein binding [IPI]
- protein homodimerization activity [IDA]
- receptor binding [IPI]
- repressing transcription factor binding [IPI]
- scaffold protein binding [IPI]
- single-stranded DNA binding [IDA]
- small protein activating enzyme binding [IPI]
- small protein conjugating enzyme binding [IPI]
- superoxide dismutase copper chaperone activity [IDA]
- transcription coactivator activity [IGI, TAS]
- transcription factor binding [IPI]
- tyrosine 3-monooxygenase activator activity [IDA]
- ubiquitin-specific protease binding [IPI]
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
Human-chromatin-related protein interactions identify a demethylase complex required for chromosome segregation.
Chromatin regulation is driven by multicomponent protein complexes, which form functional modules. Deciphering the components of these modules and their interactions is central to understanding the molecular pathways these proteins are regulating, their functions, and their relation to both normal development and disease. We describe the use of affinity purifications of tagged human proteins coupled with mass spectrometry to generate ... [more]
Cell Rep Jul. 10, 2014; 8(1);297-310 [Pubmed: 24981860]
Quantitative Score
- 15.75612184 [HGSCore]
Throughput
- High Throughput
Additional Notes
- Affinity Capture MS carried out to identify high confidence protein interactions with a iHGSCore < 11
Curated By
- BioGRID