BAIT
UFL1
KIAA0776, Maxer, NLBP, RCAD, RP3-393D12.1
UFM1-specific ligase 1
GO Process (6)
GO Function (2)
GO Component (5)
Gene Ontology Biological Process
- negative regulation of NF-kappaB transcription factor activity [IMP]
- negative regulation of protein ubiquitination [IDA]
- osteoblast differentiation [IDA]
- protein ufmylation [IDA, IMP]
- regulation of proteasomal ubiquitin-dependent protein catabolic process [IMP]
- response to endoplasmic reticulum stress [IDA]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
CLTC
CHC, CHC17, CLH-17, CLTCL2, Hc
clathrin, heavy chain (Hc)
GO Process (11)
GO Function (6)
GO Component (15)
Gene Ontology Biological Process
- antigen processing and presentation of exogenous peptide antigen via MHC class II [TAS]
- intracellular protein transport [NAS]
- membrane organization [TAS]
- mitotic nuclear division [IMP]
- negative regulation of hyaluronan biosynthetic process [IDA, IMP]
- negative regulation of protein localization to plasma membrane [IMP]
- osteoblast differentiation [IDA]
- post-Golgi vesicle-mediated transport [TAS]
- receptor internalization [IMP]
- receptor-mediated endocytosis [IMP]
- transferrin transport [IMP]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- clathrin coat [NAS]
- clathrin complex [IDA]
- clathrin-coated endocytic vesicle membrane [TAS]
- clathrin-coated vesicle [IDA]
- cytoplasm [IDA]
- cytosol [TAS]
- extracellular vesicular exosome [IDA]
- focal adhesion [IDA]
- intracellular membrane-bounded organelle [IDA]
- membrane [IDA]
- plasma membrane [TAS]
- protein complex [IDA]
- spindle [IDA]
- trans-Golgi network membrane [TAS]
- vesicle [IDA]
Homo sapiens
Affinity Capture-MS
An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and the associated interaction partner is identified by mass spectrometric methods.
Publication
UFMylation maintains tumour suppressor p53 stability by antagonizing its ubiquitination.
p53 is the most intensively studied tumour suppressor1. The regulation of p53 homeostasis is essential for its tumour-suppressive function2,3. Although p53 is regulated by an array of post-translational modifications, both during normal homeostasis and in stress-induced responses2-4, how p53 maintains its homeostasis remains unclear. UFMylation is a recently identified ubiquitin-like modification with essential biological functions5-7. Deficiency in this modification leads ... [more]
Nat Cell Biol Dec. 01, 2019; 22(9);1056-1063 [Pubmed: 32807901]
Throughput
- High Throughput
Curated By
- BioGRID