UBE2I
Gene Ontology Biological Process
- cellular protein metabolic process [TAS]
- cellular protein modification process [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- post-translational protein modification [TAS]
- protein sumoylation [IDA, TAS]
- protein ubiquitination [IBA]
- ubiquitin-dependent protein catabolic process [TAS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
TCF3
Gene Ontology Biological Process
- B cell differentiation [NAS]
- B cell lineage commitment [IDA, NAS]
- immunoglobulin V(D)J recombination [IDA]
- muscle cell differentiation [TAS]
- negative regulation of transcription from RNA polymerase II promoter [IDA]
- positive regulation of B cell proliferation [IMP]
- positive regulation of cell cycle [IDA]
- positive regulation of muscle cell differentiation [TAS]
- positive regulation of neuron differentiation [ISS]
- positive regulation of sequence-specific DNA binding transcription factor activity [IDA]
- positive regulation of transcription from RNA polymerase II promoter [IDA, ISS]
- positive regulation of transcription, DNA-templated [IDA, ISS]
- regulation of G1/S transition of mitotic cell cycle [IDA]
- regulation of transcription, DNA-templated [NAS]
- transcription, DNA-templated [IDA]
Gene Ontology Molecular Function- DNA binding [IDA, NAS]
- E-box binding [IDA, ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- bHLH transcription factor binding [IPI]
- enhancer binding [IC]
- mitogen-activated protein kinase kinase kinase binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IDA, IPI, NAS]
- protein homodimerization activity [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, NAS]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- vitamin D response element binding [IDA]
- DNA binding [IDA, NAS]
- E-box binding [IDA, ISS]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding [IDA]
- RNA polymerase II core promoter proximal region sequence-specific DNA binding transcription factor activity involved in negative regulation of transcription [IDA]
- bHLH transcription factor binding [IPI]
- enhancer binding [IC]
- mitogen-activated protein kinase kinase kinase binding [IPI]
- protein binding [IPI]
- protein heterodimerization activity [IDA, IPI, NAS]
- protein homodimerization activity [IDA]
- repressing transcription factor binding [IPI]
- sequence-specific DNA binding [IDA]
- sequence-specific DNA binding transcription factor activity [IDA, NAS]
- transcription coactivator activity [IDA]
- transcription factor binding [IPI]
- transcription regulatory region DNA binding [IDA]
- vitamin D response element binding [IDA]
Gene Ontology Cellular Component
Two-hybrid
Bait protein expressed as a DNA binding domain (DBD) fusion and prey expressed as a transcriptional activation domain (TAD) fusion and interaction measured by reporter gene activation.
Publication
Characterization of the mUBC9-binding sites required for E2A protein degradation.
Mammalian Ubc9 (mUbc9) is required for rapid degradation of the E2A proteins E12 and E47 by the ubiquitin-proteasome system. We have shown elsewhere that mUbc9 interacts with amino acids 477-530 of E12/E47. Here we test the hypothesis that this region, rich in proline, glutamic acid, serine, and threonine (PEST) residues, serves as the E2A protein degradation domain (DD). An E2A ... [more]
Throughput
- Low Throughput
Related interactions
| Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
|---|---|---|---|---|---|---|
| UBE2I TCF3 | Reconstituted Complex Reconstituted Complex An interaction is inferred between proteins in vitro. This can include proteins in recombinant form or proteins isolated directly from cells with recombinant or purified bait. For example, GST pull-down assays where a GST-tagged protein is first isolated and then used to fish interactors from cell lysates are considered reconstituted complexes (e.g. PUBMED: 14657240, Fig. 4A or PUBMED: 14761940, Fig. 5). This can also include gel-shifts, surface plasmon resonance, isothermal titration calorimetry (ITC) and bio-layer interferometry (BLI) experiments. The bait-hit directionality may not be clear for 2 interacting proteins. In these cases the directionality is up to the discretion of the curator. | Low | - | BioGRID | - |
Curated By
- BioGRID