BAIT
ANK3
ANKYRIN-G, MRT37, RP11-369L1.1
ankyrin 3, node of Ranvier (ankyrin G)
GO Process (17)
GO Function (7)
GO Component (14)
Gene Ontology Biological Process
- Golgi to plasma membrane protein transport [IMP]
- axonogenesis [ISS]
- cytoskeletal anchoring at plasma membrane [TAS]
- establishment of protein localization [IMP]
- maintenance of protein location in plasma membrane [IGI]
- membrane assembly [IMP]
- mitotic cytokinesis [IMP]
- neuronal action potential [ISS]
- plasma membrane organization [IMP]
- positive regulation of gene expression [ISS]
- positive regulation of membrane depolarization during cardiac muscle cell action potential [ISS]
- positive regulation of membrane potential [ISS]
- positive regulation of sodium ion transmembrane transporter activity [ISS]
- positive regulation of sodium ion transport [ISS]
- protein localization to plasma membrane [IGI, IMP]
- protein targeting to plasma membrane [IMP]
- regulation of potassium ion transport [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
- T-tubule [ISS]
- axon initial segment [ISS]
- basal plasma membrane [IDA]
- basolateral plasma membrane [IDA]
- cell surface [ISS]
- costamere [TAS]
- endoplasmic reticulum [TAS]
- intercalated disc [ISS]
- lateral plasma membrane [IDA]
- node of Ranvier [ISS]
- plasma membrane [ISS]
- sarcolemma [IDA]
- spectrin-associated cytoskeleton [ISS]
- tight junction [IDA]
Homo sapiens
PREY
SIRT2
SIR2, SIR2L, SIR2L2
sirtuin 2
GO Process (50)
GO Function (15)
GO Component (22)
Gene Ontology Biological Process
- cellular lipid catabolic process [ISS]
- cellular response to caloric restriction [ISS]
- cellular response to epinephrine stimulus [ISS]
- cellular response to hepatocyte growth factor stimulus [IDA]
- cellular response to hypoxia [IDA]
- cellular response to molecule of bacterial origin [IDA]
- cellular response to oxidative stress [ISS]
- chromatin silencing [NAS]
- chromatin silencing at rDNA [NAS]
- chromatin silencing at telomere [NAS]
- gene silencing [NAS]
- hepatocyte growth factor receptor signaling pathway [IDA]
- histone H3 deacetylation [IMP]
- histone H4 deacetylation [IDA]
- histone deacetylation [IDA, TAS]
- myelination in peripheral nervous system [ISS]
- negative regulation of autophagy [IMP]
- negative regulation of cell proliferation [IMP]
- negative regulation of defense response to bacterium [IMP]
- negative regulation of fat cell differentiation [ISS]
- negative regulation of oligodendrocyte progenitor proliferation [ISS]
- negative regulation of peptidyl-threonine phosphorylation [ISS]
- negative regulation of protein catabolic process [IMP]
- negative regulation of reactive oxygen species metabolic process [ISS]
- negative regulation of striated muscle tissue development [IDA]
- negative regulation of transcription from RNA polymerase II promoter [IDA, IMP]
- negative regulation of transcription from RNA polymerase II promoter in response to hypoxia [IMP]
- negative regulation of transcription, DNA-templated [IDA]
- peptidyl-lysine deacetylation [IDA]
- phosphatidylinositol 3-kinase signaling [IMP]
- positive regulation of DNA binding [ISS]
- positive regulation of attachment of spindle microtubules to kinetochore [ISS]
- positive regulation of cell division [ISS]
- positive regulation of execution phase of apoptosis [ISS]
- positive regulation of meiosis [ISS]
- positive regulation of oocyte maturation [ISS]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process [ISS]
- positive regulation of proteasomal ubiquitin-dependent protein catabolic process involved in cellular response to hypoxia [IMP]
- positive regulation of transcription from RNA polymerase II promoter [ISS]
- proteasome-mediated ubiquitin-dependent protein catabolic process [IMP]
- protein ADP-ribosylation [NAS, TAS]
- protein deacetylation [IDA, IMP]
- protein kinase B signaling [IMP]
- regulation of cell cycle [IMP]
- regulation of exit from mitosis [NAS]
- regulation of myelination [ISS]
- regulation of phosphorylation [NAS]
- response to redox state [NAS]
- substantia nigra development [IEP]
- tubulin deacetylation [IDA, IMP, ISS]
Gene Ontology Molecular Function- NAD+ ADP-ribosyltransferase activity [TAS]
- NAD+ binding [IDA]
- NAD-dependent histone deacetylase activity [IDA]
- NAD-dependent histone deacetylase activity (H4-K16 specific) [IDA]
- NAD-dependent protein deacetylase activity [IDA, IMP]
- chromatin binding [IDA]
- histone acetyltransferase binding [IPI]
- histone deacetylase activity [IDA]
- histone deacetylase binding [IPI]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- transcription factor binding [IPI]
- tubulin deacetylase activity [IDA]
- ubiquitin binding [IDA]
- zinc ion binding [IDA]
- NAD+ ADP-ribosyltransferase activity [TAS]
- NAD+ binding [IDA]
- NAD-dependent histone deacetylase activity [IDA]
- NAD-dependent histone deacetylase activity (H4-K16 specific) [IDA]
- NAD-dependent protein deacetylase activity [IDA, IMP]
- chromatin binding [IDA]
- histone acetyltransferase binding [IPI]
- histone deacetylase activity [IDA]
- histone deacetylase binding [IPI]
- protein binding [IPI]
- protein deacetylase activity [IDA, IMP]
- transcription factor binding [IPI]
- tubulin deacetylase activity [IDA]
- ubiquitin binding [IDA]
- zinc ion binding [IDA]
Gene Ontology Cellular Component
- Schmidt-Lanterman incisure [ISS]
- centriole [IDA]
- centrosome [IDA]
- chromatin silencing complex [NAS]
- chromosome [IDA]
- cytoplasm [IDA]
- cytosol [IDA]
- glial cell projection [ISS]
- juxtaparanode region of axon [ISS]
- lateral loop [ISS]
- meiotic spindle [ISS]
- microtubule [IDA]
- midbody [IDA]
- mitotic spindle [IDA]
- myelin sheath [ISS]
- nuclear heterochromatin [ISS]
- nucleus [IDA]
- paranodal junction [ISS]
- paranode region of axon [ISS]
- perikaryon [ISS]
- perinuclear region of cytoplasm [ISS]
- spindle [IDA]
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
A proximity-dependent biotinylation map of a human cell.
Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of ... [more]
Nature Jun. 02, 2021; (); [Pubmed: 34079125]
Quantitative Score
- 40.0 [FoldChange]
Throughput
- High Throughput
Additional Notes
- BioID
- SAINTexpress (v.3.6.1) was used to identify proximity interactions and those with a Bayesian FDR =< 0.01 were considered high confidence. The score represents the fold change of the average spectral count in sample replicates relative to the average in control replicates.
Curated By
- BioGRID