APEX1
Gene Ontology Biological Process
- DNA catabolic process, endonucleolytic [IDA, TAS]
- DNA catabolic process, exonucleolytic [IBA]
- DNA demethylation [IDA]
- DNA repair [IDA, TAS]
- base-excision repair [IBA, TAS]
- negative regulation of nucleic acid-templated transcription [TAS]
- oxidation-reduction process [IDA]
- positive regulation of DNA repair [IDA]
- regulation of mRNA stability [IMP]
Gene Ontology Molecular Function- 3'-5' exonuclease activity [IDA, TAS]
- DNA binding [IDA]
- DNA-(apurinic or apyrimidinic site) lyase activity [IDA, TAS]
- RNA-DNA hybrid ribonuclease activity [TAS]
- chromatin DNA binding [IDA]
- damaged DNA binding [IDA]
- double-stranded DNA 3'-5' exodeoxyribonuclease activity [IBA]
- endodeoxyribonuclease activity [TAS]
- endonuclease activity [IDA]
- metal ion binding [IDA]
- oxidoreductase activity [IDA]
- phosphodiesterase I activity [TAS]
- phosphoric diester hydrolase activity [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- site-specific endodeoxyribonuclease activity, specific for altered base [IDA]
- transcription coactivator activity [IDA]
- transcription corepressor activity [TAS]
- uracil DNA N-glycosylase activity [TAS]
- 3'-5' exonuclease activity [IDA, TAS]
- DNA binding [IDA]
- DNA-(apurinic or apyrimidinic site) lyase activity [IDA, TAS]
- RNA-DNA hybrid ribonuclease activity [TAS]
- chromatin DNA binding [IDA]
- damaged DNA binding [IDA]
- double-stranded DNA 3'-5' exodeoxyribonuclease activity [IBA]
- endodeoxyribonuclease activity [TAS]
- endonuclease activity [IDA]
- metal ion binding [IDA]
- oxidoreductase activity [IDA]
- phosphodiesterase I activity [TAS]
- phosphoric diester hydrolase activity [IDA]
- poly(A) RNA binding [IDA]
- protein binding [IPI]
- site-specific endodeoxyribonuclease activity, specific for altered base [IDA]
- transcription coactivator activity [IDA]
- transcription corepressor activity [TAS]
- uracil DNA N-glycosylase activity [TAS]
Gene Ontology Cellular Component
DIDO1
Gene Ontology Molecular Function
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
A proximity-dependent biotinylation map of a human cell.
Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of ... [more]
Quantitative Score
- 4.38 [FoldChange]
Throughput
- High Throughput
Additional Notes
- BioID
- SAINTexpress (v.3.6.1) was used to identify proximity interactions and those with a Bayesian FDR =< 0.01 were considered high confidence. The score represents the fold change of the average spectral count in sample replicates relative to the average in control replicates.
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
APEX1 DIDO1 | Affinity Capture-RNA Affinity Capture-RNA An interaction is inferred when a bait protein is affinity captured from cell extracts by either polyclonal antibody or epitope tag and associated RNA species identified by Northern blot, RT-PCR, affinity labeling, sequencing, or microarray analysis. | High | - | BioGRID | - |
Curated By
- BioGRID