BAIT

RTT109

KIM2, REM50, H3 histone acetyltransferase RTT109, KAT11, L000003932, YLL002W
Histone acetyltransferase; critical for cell survival in the presence of DNA damage during S phase; prevents hyper-amplification of rDNA; acetylates H3-K56 and H3-K9; involved in non-homologous end joining and in regulation of Ty1 transposition; interacts physically with Vps75p
Saccharomyces cerevisiae (S288c)
PREY

CMS1

YLR003C
Putative subunit of the 90S preribosome processome complex; overexpression rescues supressor mutant of mcm10; null mutant is viable; relocalizes from nucleus to cytoplasm upon DNA replication stress
GO Process (0)
GO Function (0)
GO Component (3)

Gene Ontology Cellular Component

Saccharomyces cerevisiae (S288c)

Synthetic Growth Defect

A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell.

Publication

Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109.

Fillingham J, Recht J, Silva AC, Suter B, Emili A, Stagljar I, Krogan NJ, Allis CD, Keogh MC, Greenblatt JF

Acetylation of Saccharomyces cerevisiae histone H3 on K56 by the histone acetyltransferase (HAT) Rtt109 is important for repairing replication-associated lesions. Rtt109 purifies from yeast in complex with the histone chaperone Vps75, which stabilizes the HAT in vivo. A whole-genome screen to identify genes whose deletions have synthetic genetic interactions with rtt109Delta suggests Rtt109 has functions in addition to DNA repair. ... [more]

Mol. Cell. Biol. Jul. 01, 2008; 28(13);4342-53 [Pubmed: 18458063]

Throughput

  • High Throughput

Ontology Terms

  • phenotype: vegetative growth (APO:0000106)

Additional Notes

  • Either synthetic growth defect or synthetic lethality at 30 C.

Related interactions

InteractionExperimental Evidence CodeDatasetThroughputScoreCurated ByNotes
RTT109 CMS1
Synthetic Lethality
Synthetic Lethality

A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition.

Low/High-BioGRID
285455

Curated By

  • BioGRID