BAIT
RHOB
ARH6, ARHB, MST081, MSTP081, RHOH6
ras homolog family member B
GO Process (17)
GO Function (3)
GO Component (7)
Gene Ontology Biological Process
- GTP catabolic process [TAS]
- Rho protein signal transduction [TAS]
- apoptotic process [TAS]
- axon guidance [TAS]
- blood coagulation [TAS]
- cell adhesion [ISS]
- cellular response to hydrogen peroxide [IDA]
- cellular response to ionizing radiation [IDA]
- cytokinesis [IMP]
- endosome to lysosome transport [IDA]
- negative regulation of cell cycle [ISS]
- platelet activation [TAS]
- positive regulation of angiogenesis [ISS]
- positive regulation of apoptotic process [IMP]
- regulation of small GTPase mediated signal transduction [TAS]
- small GTPase mediated signal transduction [TAS]
- transformed cell apoptotic process [ISS]
Gene Ontology Molecular Function
Gene Ontology Cellular Component
Homo sapiens
PREY
INSR
CD220, HHF5
insulin receptor
GO Process (28)
GO Function (13)
GO Component (9)
Gene Ontology Biological Process
- G-protein coupled receptor signaling pathway [IDA]
- activation of MAPK activity [IMP]
- activation of protein kinase B activity [IDA]
- activation of protein kinase activity [IMP]
- cellular response to insulin stimulus [IDA]
- glucose homeostasis [IMP]
- heart morphogenesis [IMP]
- insulin receptor signaling pathway [IDA, TAS]
- peptidyl-tyrosine phosphorylation [IDA]
- positive regulation of DNA replication [IMP]
- positive regulation of MAPK cascade [IMP]
- positive regulation of cell migration [IMP]
- positive regulation of cell proliferation [IC, IDA]
- positive regulation of developmental growth [IMP]
- positive regulation of glucose import [IDA, NAS]
- positive regulation of glycogen biosynthetic process [IDA]
- positive regulation of glycolytic process [IMP]
- positive regulation of mitosis [IMP]
- positive regulation of nitric oxide biosynthetic process [IMP]
- positive regulation of protein kinase B signaling [IMP]
- positive regulation of protein phosphorylation [IDA]
- positive regulation of respiratory burst [IDA]
- protein autophosphorylation [IDA, IMP]
- protein heterotetramerization [IDA]
- regulation of embryonic development [IMP]
- regulation of transcription, DNA-templated [IMP]
- signal transduction by phosphorylation [IDA]
- transformation of host cell by virus [IMP]
Gene Ontology Molecular Function- ATP binding [IDA]
- GTP binding [IDA]
- PTB domain binding [IPI]
- insulin binding [IDA, IPI]
- insulin receptor substrate binding [IPI]
- insulin-activated receptor activity [IDA]
- insulin-like growth factor I binding [IPI]
- insulin-like growth factor II binding [IPI]
- insulin-like growth factor receptor binding [IDA]
- phosphatidylinositol 3-kinase binding [IPI]
- protein binding [IPI]
- protein tyrosine kinase activity [IDA, IMP]
- receptor signaling protein tyrosine kinase activity [IDA]
- ATP binding [IDA]
- GTP binding [IDA]
- PTB domain binding [IPI]
- insulin binding [IDA, IPI]
- insulin receptor substrate binding [IPI]
- insulin-activated receptor activity [IDA]
- insulin-like growth factor I binding [IPI]
- insulin-like growth factor II binding [IPI]
- insulin-like growth factor receptor binding [IDA]
- phosphatidylinositol 3-kinase binding [IPI]
- protein binding [IPI]
- protein tyrosine kinase activity [IDA, IMP]
- receptor signaling protein tyrosine kinase activity [IDA]
Gene Ontology Cellular Component
Homo sapiens
Proximity Label-MS
An interaction is inferred when a bait-enzyme fusion protein selectively modifies a vicinal protein with a diffusible reactive product, followed by affinity capture of the modified protein and identification by mass spectrometric methods.
Publication
A proximity-dependent biotinylation map of a human cell.
Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of ... [more]
Nature Jun. 02, 2021; (); [Pubmed: 34079125]
Quantitative Score
- 120.0 [FoldChange]
Throughput
- High Throughput
Additional Notes
- BioID
- SAINTexpress (v.3.6.1) was used to identify proximity interactions and those with a Bayesian FDR =< 0.01 were considered high confidence. The score represents the fold change of the average spectral count in sample replicates relative to the average in control replicates.
Curated By
- BioGRID