CUT12
Gene Ontology Biological Process
Gene Ontology Molecular Function
Gene Ontology Cellular Component
CDC25
Gene Ontology Biological Process
- mitotic DNA replication checkpoint [IMP]
- peptidyl-tyrosine dephosphorylation involved in activation of protein kinase activity [IDA]
- positive regulation of cyclin-dependent protein serine/threonine kinase activity involved in G2/M transition of mitotic cell cycle [IMP]
- regulation of G2/M transition of mitotic cell cycle [IMP]
- regulation of cell size [NAS]
- signal transduction involved in intra-S DNA damage checkpoint [IMP]
Gene Ontology Molecular Function
Dosage Rescue
A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene.
Publication
Suppression of the Schizosaccharomyces pombe cut12.1 cell-cycle defect by mutations in cdc25 and genes involved in transcriptional and translational control.
Cdc25 phosphatase primes entry to mitosis by removing the inhibitory phosphate that is transferred to mitosis promoting factor (MPF) by Wee1 related kinases. A positive feedback loop then boosts Cdc25 and represses Wee1 activities to drive full-scale MPF activation and commitment to mitosis. Dominant mutations in the Schizosaccharomyces pombe spindle pole body (SPB) component Cut12 enable cdc25.22 mutants to overcome ... [more]
Throughput
- Low Throughput
Ontology Terms
- phenotype: temperature sensitive growth (APO:0000092)
Related interactions
Interaction | Experimental Evidence Code | Dataset | Throughput | Score | Curated By | Notes |
---|---|---|---|---|---|---|
CDC25 CUT12 | Dosage Rescue Dosage Rescue A genetic interaction is inferred when over expression or increased dosage of one gene rescues the lethality or growth defect of a strain that is mutated or deleted for another gene. | Low | - | PomBase | - | |
CDC25 CUT12 | Synthetic Growth Defect Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which alone causes a minimal phenotype, result in a significant growth defect under a given condition when combined in the same cell. | Low | - | BioGRID | 246547 | |
CUT12 CDC25 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | BioGRID | 247801 | |
CDC25 CUT12 | Synthetic Lethality Synthetic Lethality A genetic interaction is inferred when mutations or deletions in separate genes, each of which alone causes a minimal phenotype, result in lethality when combined in the same cell under a given condition. | Low | - | PomBase | - | |
CDC25 CUT12 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 437100 | |
CDC25 CUT12 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 247143 | |
CDC25 CUT12 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 247142 | |
CDC25 CUT12 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | BioGRID | 246412 | |
CDC25 CUT12 | Synthetic Rescue Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues the lethality or growth defect of a strain mutated or deleted for another gene. | Low | - | PomBase | - |
Curated By
- BioGRID